Skip to main content

Contextual Database of Radiological Images: Liver Parameters

  • Conference paper
  • First Online:
Innovations in Biomedical Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 526))

  • 1205 Accesses

Abstract

In this paper data from a contextual database of radiological images were analyzed in order to extract the parameters related to the volume and dimensions of the liver alongside with its intensity in the Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). Pearson correlation of P = 0.99, p < 0.01 between mean value of pixels computed for the whole liver and for the biggest liver area in the 2D slice was obtained. High correlations (P = 0.71, p < 0.001) were received for the area of the largest 2D region of interest (ROI) and the overall volume of liver, independently of the image source. The results are even higher for CT studies only (P = 0.79, p = 0.001). The estimation of the whole liver parameters based on only one slice can significantly shorten the time needed for the preliminary diagnosis and help in the computer aided diagnosis (CAD) systems development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.horosproject.org/.

References

  1. Blachier, M., Leleu, H., Peck-Radosavljevic, M., Valla, D.C., Roudot-Thoraval, F.: The burden of liver disease in europe: a review of available epidemiological data. J. Hepatol. 58(3), 593–608 (2013)

    Article  Google Scholar 

  2. Urata, K., Kawasaki, S., Matsunami, H., Hashikura, Y., Ikegami, T., Ishizone, S., Momose, Y., Komiyama, A., Makuuchi, M.: Calculation of child and adult standard liver volume for liver transplantation. Hepatology 21(5), 1317–1321 (1995)

    Article  Google Scholar 

  3. Chandramohan, A., Eapen, A., Govil, S., Govil, S., Jeyaseelan, V.: Determining standard liver volume: assessment of existing formulae in indian population. Indian J. Gastroenterol. 26(1), 22 (2007)

    Google Scholar 

  4. DeLand, F.H., North, W.A.: Relationship between liver size and body size 1. Radiology 91(6), 1195–1198 (1968)

    Article  Google Scholar 

  5. Vauthey, J.N., Abdalla, E.K., Doherty, D.A., Gertsch, P., Fenstermacher, M.J., Loyer, E.M., Lerut, J., Materne, R., Wang, X., Encarnacion, A., Herron, D., Mathey, C., Ferrari, G., Charnsangavej, C., Do, K.A., Denys, A.: Body surface area and body weight predict total liver volume in western adults. Liver Transplant. 8(3), 233–240 (2002)

    Article  Google Scholar 

  6. Heinemann, A., Wischhusen, F., Püschel, K., Rogiers, X.: Standard liver volume in the caucasian population. Liver Transplant. Surg. 5(5), 366–368 (1999)

    Article  Google Scholar 

  7. Heymsfield, S.B., Fulenwider, T., Nordlinger, B., Barlow, R., Sones, P., Kutner, M.: Accurate measurement of liver, kidney, and spleen volume and mass by computerized axial tomography. Ann. Intern. Med. 90(2), 185–187 (1979)

    Article  Google Scholar 

  8. Niederau, C., Sonnenberg, A., Müller, J.E., Erckenbrecht, J.F., Scholten, T., Fritsch, W.P.: Sonographic measurements of the normal liver, spleen, pancreas, and portal vein. Radiology 149(2), 537–540 (1983)

    Article  Google Scholar 

  9. Fritschy, P., Robotti, G., Schneekloth, G., Vock, P.: Measurement of liver volume by ultrasound and computed tomography. J. Clin. Ultrasound 11(6), 299–303 (1983)

    Article  Google Scholar 

  10. Wolf, D.C.: Evaluation of the size, shape, and consistency of the liver. In: Walker, H.K., Hall, W.D., Hurst, J.W. (eds.) Clinical Methods: The History, Physical, and Laboratory Examinations, vol. 94, 3rd edn. Butterworths, Boston (1990)

    Google Scholar 

  11. Naylor, C.D., McCormack, D.G., Sullivan, S.N.: The midclavicular line: a wandering landmark. Can. Med. Assoc. J. CMAJ 136(1), 48 (1987)

    Google Scholar 

  12. Plantefève, R., Peterlik, I., Haouchine, N., Cotin, S.: Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery. Ann. Biomed. Eng. 44(1), 139–153 (2016)

    Article  Google Scholar 

  13. Rohlfing, T., Maurer, C.R., O’Dell, W.G., Zhong, J.: Modeling liver motion and deformation during the respiratory cycle using intensity-based nonrigid registration of gated MR images. Med. Phys. 31(3), 427–432 (2004)

    Article  Google Scholar 

  14. Juszczyk, J., Pyciński, B., Pietka, E.: Patient specific phantom in bimodal image navigation system. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2908–2911, August 2015

    Google Scholar 

  15. Juszczyk, J., Pietka, E., Pyciński, B.: Granular computing in model based abdominal organs detection. Comput. Med. Imaging Graph. 46(Part 2), 121–130 (2015). Information Technologies in Biomedicine

    Article  Google Scholar 

  16. Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  17. Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, K.I., Matsui, M., Fujita, H., Kodera, Y., Doi, K.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174(1), 71–74 (2000)

    Article  Google Scholar 

  18. Clark, K.W., Gierada, D.S., Moore, S.M., Maffitt, D.R., Koppel, P., Phillips, S.R., Prior, F.W.: Creation of a CT image library for the lung screening study of the national lung screening trial. J. Digital Imaging 20(1), 23–31 (2007)

    Article  Google Scholar 

  19. Reeves, A., Biancardi, A., Yankelevitz, D., Fotin, S., Keller, B., Jirapatnakul, A., Lee, J.: A public image database to support research in computer aided diagnosis. In: 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3715–3718 (2009)

    Google Scholar 

  20. Armato III, S.G., McLennan, G., Bidaut, L., McNitt-Gray, M.F., Meyer, C.R., Reeves, A.P., Zhao, B., Aberle, D.R., Henschke, C.I., Hoffman, E.A., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  21. Heath, M., Bowyer, K., Copans, D., Moore, R., Kegelmeyer, P.: The digital database for screening mammography, digital mammography. In: IWDW 2000 5th International Workshop on Digital Mammography, pp. 212–218 (2000). http://marathon.csee.usf.edu/Mammography/Database.html

  22. Kawa, J., Juszczyk, J., Pyciński, B., Badura, P., Pietka, E.: Radiological atlas for patient specific model generation. In: Pietka, E., Kawa, J., Więcławek, W. (eds.) Information Technologies in Biomedicine, Volume 4. AISC, vol. 284, pp. 69–84. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

Download references

Acknowledgements

The work has been partially financed by Polish Ministry of Science and Silesian University of Technology statutory financial support for young researchers BKM-508/RAu-3/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Stępień .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Stępień, P., Bieńkowska, M., Kawa, J. (2017). Contextual Database of Radiological Images: Liver Parameters. In: Gzik, M., Tkacz, E., Paszenda, Z., Piętka, E. (eds) Innovations in Biomedical Engineering. Advances in Intelligent Systems and Computing, vol 526. Springer, Cham. https://doi.org/10.1007/978-3-319-47154-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47154-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47153-2

  • Online ISBN: 978-3-319-47154-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics