Skip to main content

Discrete Abstraction of Multiaffine Systems

  • Conference paper
  • First Online:
Hybrid Systems Biology (HSB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9957))

Included in the following conference series:

Abstract

Many biological systems can be modeled as multiaffine hybrid systems. Due to the nonlinearity of multiaffine systems, it is difficult to verify their properties of interest directly. A common strategy to tackle this problem is to construct and analyze a discrete overapproximation of the original system. However, the conservativeness of a discrete abstraction significantly determines the level of confidence we can have in the properties of the original system. In this paper, in order to reduce the conservativeness of a discrete abstraction, we propose a new method based on a sufficient and necessary decision condition for computing discrete transitions between states in the abstract system. We assume the state space partition of a multiaffine system to be based on a set of multivariate polynomials. Hence, a rectangular partition defined in terms of polynomials of the form \((x_i-c)\) is just a simple case of multivariate polynomial partition, and the new decision condition applies naturally. We analyze and demonstrate the improvement of our method over the existing methods using some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alur, R., Dang, T., Ivančić, F.: Progress on reachability analysis of hybrid systems using predicate abstraction. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 4–19. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 20–35. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Bak, S., Bogomolov, S., Henzinger, T.A., Johnson, T.T., Prakash, P.: Scalable static hybridization methods for analysis of nonlinear systems. In: Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, HSCC 2016, Vienna, Austria, pp. 155–164, 12–14 April 2016

    Google Scholar 

  4. Bartocci, E., Corradini, F., Di Berardini, M.R., Entcheva, E., Smolka, S.A., Grosu, R.: Modeling and simulation of cardiac tissue using hybrid I/O automata. Theor. Comput. Sci. 410(33), 3149–3165 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartocci, E., Corradini, F., Entcheva, E., Grosu, R., Smolka, S.A.: Cellexcite: an efficient simulation environment for excitable cells. BMC Bioinform. 9, S–2 (2008)

    Article  Google Scholar 

  6. Bartocci, E., Lió, P.: Computational modeling, formal analysis and tools for systems biology. PLOS Comput. Biol. 12(1), e1004591 (2016)

    Article  Google Scholar 

  7. Bartocci, E., Liò, P., Merelli, E., Paoletti, N.: Multiple verification in complex biological systems: the bone remodelling case study. Trans. Comput. Syst. Biol. 14, 53–76 (2012)

    Article  MATH  Google Scholar 

  8. Batt, G., Belta, C., Weiss, R.: Temporal logic analysis of gene networks under parameter uncertainty. Trans. Autom. Control 53(Special Issue), 215–229 (2008)

    Article  MathSciNet  Google Scholar 

  9. Batt, G., De Jong, H., Page, M., Geiselmann, J.: Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica 44(4), 982–989 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Belta, C., Habets, L.C.: Controlling a class of nonlinear systems on rectangles. Trans. Autom. Control 51(11), 1749–1759 (2006)

    Article  MathSciNet  Google Scholar 

  11. Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T.T., Ladan, H., Podelski, A., Wehrle, M.: Guided search for hybrid systems based on coarse-grained space abstractions. Int. J. Softw. Tools Technol. Transf. 18(4), 449–467 (2016). doi:10.1007/s10009-015-0393-y

    Article  Google Scholar 

  12. Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasareanu, C., Podelski, A., Strump, T.: Assume-guarantee abstraction refinement meets hybrid systems. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 116–131. Springer, Heidelberg (2014)

    Google Scholar 

  13. Bogomolov, S., Schilling, C., Bartocci, E., Batt, G., Kong, H., Grosu, R.: Abstraction-based parameter synthesis for multiaffine systems. In: Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 19–35. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26287-1_2

    Chapter  Google Scholar 

  14. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, New York (2007)

    Book  MATH  Google Scholar 

  15. Dang, T., Le Guernic, C., Maler, O.: Computing reachable states for nonlinear biological models. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 126–141. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Dreossi, T., Dang, T.: Parameter synthesis for polynomial biological models. In: Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control, pp. 233–242. ACM (2014)

    Google Scholar 

  17. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Habets, L., Collins, P.J., van Schuppen, J.H.: Reachability and control synthesis for piecewise-affine hybrid systems on simplices. IEEE Trans. Autom. Control 51(6), 938–948 (2006)

    Article  MathSciNet  Google Scholar 

  19. Habets, L., Van Schuppen, J.H.: A control problem for affine dynamical systems on a full-dimensional polytope. Automatica 40(1), 21–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Habets, L.C.G.J.M., Van Schuppen, J.: A control problem for affine dynamical systems on a full-dimensional simplex. Rep. Probab. Netw. Algorithms 17, 1–19 (2000)

    Google Scholar 

  21. Jiang, Y., Zhang, H., Li, Z., Deng, Y., Song, X., Gu, M., Sun, J.: Design and optimization of multiclocked embedded systems using formal techniques. IEEE Trans. Ind. Electron. 62(2), 1270–1278 (2015)

    Article  Google Scholar 

  22. Jiang, Y., Zhang, H., Zhang, H., Liu, H., Song, X., Gu, M., Sun, J.: Design of mixed synchronous/asynchronous systems with multiple clocks. IEEE Trans. Parallel Distrib. Syst. 26(8), 2220–2232 (2015)

    Article  Google Scholar 

  23. Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 348–362. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.A., Invariant clusters for hybrid systems. arXiv preprint arXiv: 1605.01450 (2016)

  25. Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-based barrier certificate generation for safety verification of hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Kong, H., Song, X., Han, D., Gu, M., Sun, J.: A new barrier certificate for safety verification of hybrid systems. Comput. J. 57(7), 1033–1045 (2014)

    Article  Google Scholar 

  27. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical systems. In: International Conference on Embedded Software, pp. 97–106. ACM (2011)

    Google Scholar 

  28. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant generation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 268–288. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49122-5_13

    Chapter  Google Scholar 

  29. Tiwari, A.: Abstractions for hybrid systems. Formal Methods Syst. Des. 32(1), 57–83 (2008)

    Article  MATH  Google Scholar 

  30. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23, S11405-N23 and S11412-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kong, H. et al. (2016). Discrete Abstraction of Multiaffine Systems. In: Cinquemani, E., Donzé, A. (eds) Hybrid Systems Biology. HSB 2016. Lecture Notes in Computer Science(), vol 9957. Springer, Cham. https://doi.org/10.1007/978-3-319-47151-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47151-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47150-1

  • Online ISBN: 978-3-319-47151-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics