Skip to main content

Hybrid Stochastic Simulation of Rule-Based Polymerization Models

  • Conference paper
  • First Online:
Hybrid Systems Biology (HSB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9957))

Included in the following conference series:

  • 423 Accesses

Abstract

Modeling and simulation of polymer formation is an important field of research not only in the material sciences but also in the life sciences due to the prominent role of processes such as actin filament formation and multivalent ligand-receptor interactions. While the advantages of a rule-based description of polymerizations has been successfully demonstrated, no efficient simulation of these mostly stiff processes is currently available, in particular for large system sizes.

We present a hybrid stochastic simulation approach, in which the average changes of highly abundant species due to fast reactions are deterministically simulated while for the remaining species with small counts a rule-based simulation is performed. We propose a nesting of rejection steps to arrive at an approach that is efficient and accurate. We test our method on two case studies of polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, we consider only a single product pattern for rules, since reactions with two products can still be described by a single product pattern. In such a case, the pattern does not represent one connected chemical structure, but the structure misses a bond and can therefore be divided into two substructures.

  2. 2.

    Concentrations can be converted to counts and vice versa as described in [28], just by using the factor \(V\cdot N_A\), where V is the volume of the system and \(N_A\) is Avogadro constant.

References

  1. Ali Parsa, M., Kozhan, I., Wulkow, M., Hutchinson, R.A.: Modeling of functional group distribution in copolymerization: a comparison of deterministic and stochastic approaches. Macromol. Theory Simul. 23(3), 207–217 (2014)

    Article  Google Scholar 

  2. Anderson, D.F.: A modified next reaction method for simulating chemical systems with time dependent propensities and delays. J. Chem. Phys. 127(21), 214107 (2007)

    Article  Google Scholar 

  3. Bortolussi, L., Krüger, T., Lehr, T., Wolf, V.: Rule-based modelling and simulation of drug-administration policies. In: Proceedings of the Symposium on Modeling and Simulation in Medicine, pp. 53–60. Society for Computer Simulation International (2015)

    Google Scholar 

  4. Cao, Y., Gillespie, D.T., Petzold, L.R.: Accelerated stochastic simulation of the stiff enzyme-substrate reaction. J. Chem. Phys. 123(14), 144917 (2005)

    Article  Google Scholar 

  5. Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122(1), 014116 (2005)

    Article  Google Scholar 

  6. Craft, D.L., Wein, L.M., Selkoe, D.J.: A mathematical model of the impact of novel treatments on the a\(\beta \) burden in the Alzheimers brain, CSF and plasma. Bull. Math. Biol. 64(5), 1011–1031 (2002)

    Article  MATH  Google Scholar 

  7. Crudu, A., Debussche, A., Radulescu, O.: Hybrid stochastic simplifications for multiscale gene networks. BMC Syst. Biol. 3(1), 1 (2009)

    Article  Google Scholar 

  8. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74407-8_3

    Chapter  Google Scholar 

  9. Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular signaling networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76637-7_10

    Chapter  Google Scholar 

  10. Danos, V., Laneve, C.: Core formal molecular biology. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 302–318. Springer, Heidelberg (2003). doi:10.1007/3-540-36575-3_21

    Chapter  Google Scholar 

  11. Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Rule-based modeling of biochemical networks. Complexity 10(4), 22–41 (2005)

    Article  Google Scholar 

  12. Fehlberg, E.: Low-order classical runge-kutta formulas with stepsize control and their application to some heat transfer problems. Technical report, NASA TR R-315, National Aeronautics and Space Administration, Washington, D.C., July 1969

    Google Scholar 

  13. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  14. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)

    Article  Google Scholar 

  15. Goldstein, B., Perelson, A.S.: Equilibrium theory for the clustering of bivalent cell surface receptors by trivalent ligands. Biophys. J. 45(6), 1109 (1984)

    Article  Google Scholar 

  16. Helal, M., Hingant, E., Pujo-Menjouet, L., Webb, G.F.: Alzheimer’s disease: analysis of a mathematical model incorporating the role of prions. J. Math. Biol. 69(5), 1207–1235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Herajy, M., Heiner, M.: Hybrid representation and simulation of stiff biochemical networks. Nonlinear Anal. Hybrid Syst. 6(4), 942–959 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hogg, J.S., Harris, L.A., Stover, L.J., Nair, N.S., Faeder, J.R.: Exact hybrid particle/population simulation of rule-based models of biochemical systems. PLoS Comput. Biol. 10(4), e1003544 (2014)

    Article  Google Scholar 

  19. Kiparissides, C.: Polymerization reactor modeling: a review of recent developments and future directions. Chem. Eng. Sci. 51(10), 1637–1659 (1996)

    Article  Google Scholar 

  20. Lewis, P.A., Shedler, G.S.: Simulation of nonhomogeneous poisson processes by thinning. Naval Res. Logistics Q. 26(3), 403–413 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mastan, E., Zhu, S.: Method of moments: a versatile tool for deterministic modeling of polymerization kinetics. Eur. Polym. J. 68, 139–160 (2015)

    Article  Google Scholar 

  22. Monine, M.I., Posner, R.G., Savage, P.B., Faeder, J.R., Hlavacek, W.S.: Modeling multivalent ligand-receptor interactions with steric constraints on configurations of cell-surface receptor aggregates. Biophys. J. 98(1), 48–56 (2010)

    Article  Google Scholar 

  23. Puchałka, J., Kierzek, A.M.: Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. Biophys. J. 86(3), 1357–1372 (2004)

    Article  Google Scholar 

  24. Roland, J., Berro, J., Michelot, A., Blanchoin, L., Martiel, J.L.: Stochastic severing of actin filaments by actin depolymerizing factor/cofilin controls the emergence of a steady dynamical regime. Biophys. J. 94(6), 2082–2094 (2008)

    Article  Google Scholar 

  25. Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat. Methods 8(2), 177–183 (2011)

    Article  Google Scholar 

  26. Thanh, V.H., Priami, C.: Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm. J. Chem. Phys. 143(5), 054104 (2015)

    Article  Google Scholar 

  27. Van Steenberge, P., Dhooge, D., Reyniers, M.F., Marin, G.: Improved kinetic Monte Carlo simulation of chemical composition-chain length distributions in polymerization processes. Chem. Eng. Sci. 110, 185–199 (2014)

    Article  Google Scholar 

  28. Wolkenhauer, O., Ullah, M., Kolch, W., Cho, K.H.: Modeling and simulation of intracellular dynamics: choosing an appropriate framework. IEEE Trans. Nanobiosci. 3(3), 200–207 (2004)

    Article  Google Scholar 

  29. Wulkow, M.: Numerical treatment of countable systems of ordinary differential equations. Konrad-Zuse-Zentrum für Informationstechnik (1990)

    Google Scholar 

  30. Wulkow, M.: Computer aided modeling of polymer reaction engineeringthe status of predici, I-simulation. Macromol. React. Eng. 2(6), 461–494 (2008)

    Article  MathSciNet  Google Scholar 

  31. Yang, J., Monine, M.I., Faeder, J.R., Hlavacek, W.S.: Kinetic Monte Carlo method for rule-based modeling of biochemical networks. Phys. Rev. E 78(3), 031910 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Cluster of Excellence on Multimodal Computing and Interaction (MMCI) at Saarland University, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Krüger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Krüger, T., Wolf, V. (2016). Hybrid Stochastic Simulation of Rule-Based Polymerization Models. In: Cinquemani, E., Donzé, A. (eds) Hybrid Systems Biology. HSB 2016. Lecture Notes in Computer Science(), vol 9957. Springer, Cham. https://doi.org/10.1007/978-3-319-47151-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47151-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47150-1

  • Online ISBN: 978-3-319-47151-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics