Skip to main content

Decompression Sickness

  • Chapter
Textbook of Hyperbaric Medicine

Abstract

Decompression sickness (DCS) is a form of dysbarism, which is the general term applied to all changes, pathophysiological changes secondary to altered environmental pressure. This chapter looks at risk factors, pathophysiology, clinical features, diagnosis, and the treatment of DCS. Early recompression is the only effective treatment for DCS, the increase in pressure redissolving the gas phase and oxygen restoring endothelial disruption and downregulating neutrophil interactions. For air diving recompression with oxygen or helium and oxygen mixtures is preferred to recompression breathing air. Helium and oxygen divers should not be recompressed breathing air. The management of neurological manifestations of DCS is given special attention to avoid late sequelae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharon-Peretz JS, Adir Y, Gordon CR, Kol S, Gal N, Melamed Y. Spinal cord decompression sickness in sport diving. Arch Neurol. 1993;50:753–6.

    Article  PubMed  CAS  Google Scholar 

  • Ball R. Effect of severity, time to recompression with oxygen, and re-treatment on outcome in forty-nine cases of spinal cord decompression sickness. Undersea Hyperb Med. 1993;20:133–45.

    PubMed  CAS  Google Scholar 

  • Blatteau JE, Gempp E, Constantin P, Louge P. Risk factors and clinical outcome in military divers with neurological decompression sickness: influence of time to recompression. Diving Hyperb Med. 2011;41:129–34.

    PubMed  Google Scholar 

  • Blatteau JE, Barre S, Pascual A, Castagna O, Abraini JH, Risso JJ. Protective effects of fluoxetine on decompression sickness in mice. PLoS One. 2012;7, e49069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blatteau JE, Brubakk AO, Gempp E, Castagna O, Risso JJ, Vallée N. Sidenafil pre-treatment promotes decompression sickness in rats. PLoS One. 2013;8, e60639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blogg SL, Loveman GA, Seddon FM, Woodger N, Koch A, Reuter M, et al. Magnetic resonance imaging and neuropathology findings in the goat nervous system following hyperbaric exposures. Eur Neurol. 2004;52:18–28.

    Article  PubMed  CAS  Google Scholar 

  • Boycott AE, Damant GC, Haldane JS. The prevention of compressed air illness. J Hyg (Lond). 1908;8:342–443.

    Article  CAS  Google Scholar 

  • Butler FK. Decompression sickness presenting as optic neuropathy. Aviat Space Environ Med. 1991;62:346–50.

    PubMed  CAS  Google Scholar 

  • Butler WP, Topper SM, Dart TS. USAF treatment table 8: treatment for altitude decompression sickness. Aviat Space Environ Med. 2002;73:46–9.

    PubMed  Google Scholar 

  • Cronin WA, Senese AL, Arnaud FG, Regis DP, Auker CR, Mahon RT. The effect of the perfluorocarbon emulsion Oxycyte on platelet count and function in the treatment of decompression sickness in a swine model. Blood Coagul Fibrinolysis. 2016;27:702–10.

    Article  PubMed  CAS  Google Scholar 

  • Dan-Goor E, Asaria R, Borthwick B, Firth O, Hughes I, Sheather D, et al. Posterior vitreal detachment in decompression illness—case report and discussion. Am J Emerg Med. 2012;30:637.e5–6.

    Article  Google Scholar 

  • Davis JC, Sheffield PJ, Schuknecht L, et al. Altitude decompression sickness: hyperbaric therapy results in 145 cases. Aviat Space Environ Med. 1977;48:722–30.

    PubMed  CAS  Google Scholar 

  • Duplessis CA, Fothergill D. Investigating the potential of statin medications as a nitric oxide (NO) release agent to decrease decompression sickness: a review article. Med Hypotheses. 2008;70:560–6.

    Article  PubMed  CAS  Google Scholar 

  • Fuerecdi GA, Czarnecki DJ, Kindwall EP. MR findings in the brains of compressed-air tunnel workers; relationship to psychometric results. Am J Roentgen. 1991;12:67–70.

    Google Scholar 

  • Gempp E, Blatteau JE. Preconditioning methods and mechanisms for preventing the risk of decompression sickness in scuba divers: a review. Res Sports Med. 2010;18:205–18.

    Article  PubMed  Google Scholar 

  • Gempp E, Louge P. Inner ear decompression sickness in scuba divers: a review of 115 cases. Eur Arch Otorhinolaryngol. 2013;270:1831–7.

    Article  PubMed  Google Scholar 

  • Gempp E, De Maistre S, Louge P. Serum albumin as a biomarker of capillary leak in scuba divers with neurological decompression sickness. Aviat Space Environ Med. 2014;85:1049–52.

    Article  PubMed  CAS  Google Scholar 

  • Geng M, Zhou L, Liu X, Li P. Hyperbaric oxygen treatment reduced the lung injury of type II decompression sickness. Int J Clin Exp Pathol. 2015;8:1797–803.

    PubMed  PubMed Central  Google Scholar 

  • Germonpre P, Balestra C, Obeid G, Caers D. Cutis Marmorata skin decompression sickness is a manifestation of brainstem bubble embolization, not of local skin bubbles. Med Hypotheses. 2015;85:863–9.

    Article  PubMed  Google Scholar 

  • Gillis MF, Peterson PL, Karagianes MT. In vivo detection of circulating gas emboli associated with decompression sickness using the Doppler blood flow detector. Nature. 1968;217:965–7.

    Article  PubMed  CAS  Google Scholar 

  • Haldane JS. Admiralty report on deep water diving. London HMSO CN 1549; 1907.

    Google Scholar 

  • Haldane JS. Respiration. New Haven: Yale University Press; 1922. p. 332–57.

    Book  Google Scholar 

  • Harch PG, Van Meter KW, Gottlieb SF, et al. Delayed treatment of type II DCS: the importance of low pressure HMPAO-SPECT brain imaging in its diagnosis and management. Undersea Hyperbaric Med. 1993;20(Suppl.):51 (abstract).

    Google Scholar 

  • Harch PG, Van Meter KW, Gottlieb SF, et al. The effect of HBO tailing treatment on neurological residual and spect brain images in type II (cerebral) DCI/CAGE. Undersea Hyperbaric Med. 1994;21(Suppl):(abstract).

    Google Scholar 

  • Hills BA, James PB. Microbubble damage to the blood-brain barrier. Undersea Biomed Res. 1991;18:111–6.

    PubMed  CAS  Google Scholar 

  • Ide WW. Central serous chorioretinopathy following hypobaric chamber exposure. Aviat Space Environ Med. 2014;85:1053–5.

    Article  PubMed  Google Scholar 

  • Iordanidou V, Gendron G, Khammari C, Rodallec T, Baudouin C. Choroidal ischemia secondary to a diving injury. Retin Cases Brief Rep. 2010;4:262–5.

    Article  PubMed  Google Scholar 

  • Jain KK. Decompression sickness: neurologic manifestations. In: Greenamyre T, editor. MedLink neurology. San Diego: Medlink Corporation; 2016.

    Google Scholar 

  • Jallul S, Osman A, El-Masry W. Cerebro-spinal decompression sickness: report of two cases. Spinal Cord. 2007;45:116–20.

    Article  PubMed  CAS  Google Scholar 

  • James PB. Evidence for subacute fat embolism as the cause of multiple sclerosis. Lancet. 1982;1:380–6.

    Article  PubMed  CAS  Google Scholar 

  • James PB. Helium and oxygen mixtures in the treatment of compressed-air illness. Undersea Biomed Res. 1988;15:321.

    PubMed  CAS  Google Scholar 

  • James PB. Hyperbaric oxygenation in fluid microembolism. Neurol Res. 2007;29:156–61.

    Article  PubMed  Google Scholar 

  • James PB. Oxygen and the brain: the journey of our lifetime. North Palm Beach: Best Publishing; 2014.

    Google Scholar 

  • James PB. Problem areas in the therapy of neurological decompression sickness. In: James PB, editor. The size distribution of gas emboli arising during decompression: a review of the concept of critical diameter. Proceedings of XIII annual congress of EUBS, Dragerwerke, Travemunde; 1981. p. 481–6.

    Google Scholar 

  • Jersey SL, Jesinger RA, Palka P. Brain magnetic resonance imaging anomalies in U-2 pilots with neurological decompression sickness. Aviat Space Environ Med. 2013;84:3–11.

    Article  PubMed  Google Scholar 

  • Jones JP, Ramirez S, Doty SB. The pathophysiologic role of fat in dysbaric osteonecrosis. Clin Orthop. 1993;296:256–64.

    Article  Google Scholar 

  • Kalentzos VN. Images in clinical medicine. Cutis marmorata in decompression sickness. N Engl J Med. 2010;362(23), e67.

    Article  PubMed  Google Scholar 

  • Katsenelson K, Arieli Y, Abramovich A, Feinsod M, Arieli R. Hyperbaric oxygen pretreatment reduces the incidence of de-compression sickness in rats. Eur J Appl Physiol. 2007;101:571–6.

    Article  PubMed  Google Scholar 

  • Kayar SR. On beginning a second century of decompression sickness research: where are we and what comes next? Aviat Space Environ Med. 2008;79:1071–2.

    Article  PubMed  Google Scholar 

  • Kayser B, Jean D, Herry JP, Bärtsch P. Pressurization and acute mountain illness. Aviat Space Environ Med. 1993;64:928–31.

    PubMed  CAS  Google Scholar 

  • Kei PL, Choong CT, Young T, Lee SH, Lim CC. Decompression sickness: MRI of the spinal cord. J Neuroimaging. 2007;17:378–80.

    Article  PubMed  Google Scholar 

  • Klingmann C. Inner ear decompression sickness in compressed-air diving. Undersea Hyperb Med. 2012;39:589–94.

    PubMed  Google Scholar 

  • Kohshi K, Wong RM, Abe H, Katoh T, Okudera T, Mano Y. Neurological manifestations in Japanese Ama divers. Undersea Hyperb Med. 2005;32:11–20.

    PubMed  CAS  Google Scholar 

  • Kol S, Adir Y, Gordon CR, Melamed Y. Oxy-helium treatment of severe spinal cord decompression sickness after air diving. Undersea Hyperb Med. 1993;20:147–54.

    PubMed  CAS  Google Scholar 

  • Lee J, Kim K, Park S. Factors associated with residual symptoms after recompression in type I decompression sickness. Am J Emerg Med. 2015;33:363–6.

    Article  PubMed  Google Scholar 

  • Liow MH, Ho BH, Kim SJ, Soh CR, Tang KC. MRI findings in cervical spinal cord type II neurological decompression sickness: a case report. Undersea Hyperb Med. 2014;41:599–603.

    PubMed  CAS  Google Scholar 

  • Little T, Butler BD. Pharmacological intervention to the inflammatory response from decompression sickness in rats. Aviat Space Environ Med. 2008;79:87–93.

    Article  PubMed  CAS  Google Scholar 

  • Louge P, Gempp E, Hugon M. MRI features of spinal cord decompression sickness presenting as a Brown-Sequard syndrome. Diving Hyperb Med. 2012;42:88–91.

    PubMed  Google Scholar 

  • Martin JD, Thom SR. Vascular leukocyte sequestration in decompression sickness and prophylactic hyperbaric oxygen therapy in rats. Aviat Space Environ Med. 2002;73:565–9.

    PubMed  Google Scholar 

  • McGuire S, Sherman P, Profenna L, Grogan P, Sladky J, Brown A, et al. White matter hyperintensities on MRI in high altitude U2 pilots. Neurology. 2013;81:729–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mutzbauer TS, Staps E. How delay to recompression influences treatment and outcome in recreational divers with mild to moderate neurological decompression sickness in a remote setting. Diving Hyperb Med. 2013;43:42–5.

    PubMed  Google Scholar 

  • Naiman JL, Donohue WL, Prichard JS. Fatal nucleus pulposus embolism of spinal cord after trauma. Neurology. 1961;11:83–7.

    Article  PubMed  CAS  Google Scholar 

  • Parsons JT, Smith CR, Zhu J, Spiess BD. Retinal angiography: noninvasive, real-time bubble assessment from the ocular fundus. Undersea Hyperb Med. 2009;36:169–81.

    PubMed  Google Scholar 

  • Pokroy R, Barenboim E, Carter D, Assa A, Alhalel A. Unilateral optic disc swelling in a fighter pilot. Aviat Space Environ Med. 2009;80:894–7.

    Article  PubMed  Google Scholar 

  • Powell MR, Thoma W, Fust HD, et al. Gas phase formation and Doppler monitoring during decompression with elevated oxygen. Undersea Biomed Res. 1983;10:217–24.

    PubMed  CAS  Google Scholar 

  • Rudge FW. A case of decompression sickness at 2,432 meters (8,000 feet). Aviat Space Environ Med. 1990;61:1026–7.

    PubMed  CAS  Google Scholar 

  • Rudge FW. Decompression sickness presenting as viral syndrome. Aviat Space Environ Med. 1991;62:60–1.

    PubMed  CAS  Google Scholar 

  • Rudge FW, Shafer MR. The effect of delay on treatment outcome in altitude-induced decompression sickness. Aviat Space Environ Med. 1991;62:687–90.

    PubMed  CAS  Google Scholar 

  • Sheffield PJ, Davis JC. Application of hyperbaric oxygen therapy in a case of prolonged cerebral hypoxia following rapid de-compression. Aviat Space Environ Med. 1976;47:759–62.

    PubMed  CAS  Google Scholar 

  • Smith CR, Parsons JT, Zhu J, Spiess BD. The effect of intravenous perfluorocarbon emulsions on whole-body oxygenation after severe decompression sickness. Diving Hyperb Med. 2012;42:10–7.

    PubMed  Google Scholar 

  • Spencer MP. Decompression limits for compressed air determined by ultrasonically detected blood bubbles. J Appl Physiol. 1976;40:229–35.

    Article  PubMed  CAS  Google Scholar 

  • Spiess BD. Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. J Appl Physiol. 2009;106:1444–52.

    Article  PubMed  CAS  Google Scholar 

  • Stéphant E, Gempp E, Blatteau JE. Role of MRI in the detection of marrow bubbles after musculoskeletal decompression sickness predictive of subsequent dysbaric osteonecrosis. Clin Radiol. 2008;63:1380–3, discussion 1384–5.

    Article  PubMed  Google Scholar 

  • Suzuki N, Yagishita K, Togawa S, Okazaki F, Shibayama M, Yamamoto K, et al. A case-control study evaluating relative risk factors for decompression sickness: a research report. Undersea Hyperb Med. 2014;41:521–30.

    PubMed  Google Scholar 

  • Tempel R, Severance HW. Proposing short-term observation units for the management of decompression illness. Undersea Hyperb Med. 2006;33:89–94.

    PubMed  CAS  Google Scholar 

  • Toro-Gonzalez G, Navarro-Roman L, Roman GC, Cantillo J, Serrano B, Herrera M, et al. Acute ischemic stroke from fibrocartilagenous embolism to the middle cerebral artery. Stroke. 1993;24:730–40.

    Article  Google Scholar 

  • Tseng WS, Huang NC, Huang WS, Lee HC. Brown-Séquard syndrome: a rare manifestation of decompression sickness. Occup Med (Lond). 2015;65:758–60.

    Google Scholar 

  • Weijs JH, Snoeijer JH, Lohse D. Formation of surface nanobubbles and the universality of their contact angles: a molecular dynamics approach. Phys Rev Lett. 2012;108:104501.

    Article  PubMed  CAS  Google Scholar 

  • Wirjosemito SA, Touhey JE, Workman WT. Type II altitude decompression sickness (DCS): US Air Force experience with 133 cases. Aviat Space Environ Med. 1989;60:256–62.

    PubMed  CAS  Google Scholar 

  • Yoshiyama M, Asamoto S, Kobayashi N, Sugiyama H, Doi H, Sakagawa H, et al. Spinal cord decompression sickness associated with scuba diving: correlation of immediate and delayed magnetic resonance imaging findings with severity of neurologic impairment—a report on 3 cases. Surg Neurol. 2007;67:283–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip B. James MB, ChB, DIH, PhD, FFOM .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

James, P.B., Jain, K.K. (2017). Decompression Sickness. In: Textbook of Hyperbaric Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-47140-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47140-2_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47138-9

  • Online ISBN: 978-3-319-47140-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics