Efficient Interval Indexing and Searching on Cloud

  • Xin ZhouEmail author
  • Jun Zhang
  • GuanYu Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9998)


Interval queries are widely used in social networks, information retrieval and database domains. As an important query type, interval query has been explored in depth by researchers long ago. However, the works to study interval indexing and querying on cloud platform are few. The paper analyzes the shortcomings of existing work of interval indexing and searching on key-value store. To reduce the space overhead and respond time, we propose a new index structure and corresponding searching algorithms. The index structure takes full advantage of the features of key-value store to improve the query performance. The extensive experiments based on real and simulated data sets show that our approach is effective and efficient.


Interval query Indexing Searching Cloud 



Thank the author of paper [9] for sharing his source code. Our work is supported by “the Fundamental Research Funds for the Central Universities, No. 3132016031”, and “National Natural Science Foundation of China, No. 61371090 and No. 61073057”.


  1. 1.
    Kumar, A., Tsotras, V.J., Faloutsos, C.: Designing access methods for bitemporal databases. IEEE Trans. Knowl. Data Eng. 10(1), 1–20 (1998)CrossRefGoogle Scholar
  2. 2.
    Salzberg, B., Tsotras, V.J.: Comparison of access methods for time evolving data. ACM Comput. Surv. (CSUR) 31(2), 158–221 (1999)CrossRefGoogle Scholar
  3. 3.
    Elmasri, R., Wuu, G.T.J., Kim, Y.-J.: The time index: an access structure for temporal data. In: Proceedings of the 16th International Conference on Very Large Data Bases, pp. 1–12. Morgan Kaufmann, Brisbane (1990)Google Scholar
  4. 4.
    Kouramajian, V., Kamel, I., Elmasri, R., The, W.R.: Time index+: an incremental access structure for temporal databases. In: Proceeding of the Third International Conference on Information and Knowledge Management (CIKM), pp. 296–303. ACM, Gaithersburg (1994)Google Scholar
  5. 5.
    Ang, C., Tan, K.: The interval B-tree. Inf. Process. Lett. 53(2), 85–89 (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Stantic, B., Topor, R., Terry, J., Sattar, A.: Advanced indexing technique for temporal data. Comput. Sci. Inf. Syst. (COMSIS) 7(4), 679–703 (2010)CrossRefGoogle Scholar
  7. 7.
    Kolovson, C., Stonebraker, M.: Segment indexes: dynamic indexing techniques for multi-dimensional interval data. SIGMOD Rec. 20(2), 138–147 (1991)CrossRefGoogle Scholar
  8. 8.
    Bliujute, R., Jensen, C.S., Saltenis, S., Slivinskas, G.: Light-weight indexing of general bitemporal data. In: Proceedings of the 12th International Conference on Scientific and Statistical Database Management (SSDBM). IEEE Computer Society, Berlin, pp. 125–138 (2000)Google Scholar
  9. 9.
    Sfakianakis, G., Patlakas, I., Ntarmos, N., Triantafillou, P.: Interval indexing, querying on key-value cloud stores. In: Proceedings of 29th IEEE International Conference on Data Engineering (ICDE), pp. 805–816. ACM, Brisban (2013)Google Scholar
  10. 10.
    Zheng, C., Shen, G., Li, S., Shenker, S.: Distributed segment tree: support of range query and cover query over DHT. In: 5th International workshop on Peer-To-Peer Systems (IPTPS), Santa Barbara (2006)Google Scholar
  11. 11.
    Chang, F., Dean, J., Ghemawat, S., et al.: Bigtable: a distributed storage system for structured data. In: Proceedings of Operating Systems Design and Implementation (OSDI). USENIX Association, Seattle, pp. 205–218 (2006)Google Scholar
  12. 12.
  13. 13.
    Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A. et al.: PNUTS: Yahoo!s hosted data serving platform. In: Proceedings of VLDB Endowment. ACM, Auckland, pp. 1277–1288 (2008)Google Scholar
  14. 14.
    Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM Oper. Syst. Rev. (SIGOPS) 44(2), 35–40 (2010)CrossRefGoogle Scholar
  15. 15.
    DeCandia, G., Hastorun, D., Jampani, M. et al.: Dynamo: Amazons highly available key-value store. In: Proceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP), pp. 205–220. ACM, Stevenson (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.School of Information Science and TechnologyDalian Maritime UniversityDalianChina

Personalised recommendations