An Improved Community Detection Method in Bipartite Networks

  • Fan Chunlong
  • Song Yan
  • Song Huimin
  • Ding GuohuiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9998)


Bipartite networks is one of the important research object in complex networks. At present, the bipartite networks community partition is mainly aimed at how to carry out accurate community structure, while the study in the community merge strategy is relative rare. In this paper, we study community partition merger principle in single nodes of bipartite networks to propose an improved bipartite networks community detection method, which is based on Page Rank algorithm, information spreading probability model and combined with the modularity. The information of single nodes is calculated by information diffusion matrix. The value of information diffusion matrix larger than the threshold are merged every time, which quickly reduces the dimensions of the information diffusion matrix to speed up the merger of the community significantly. By comparing and analyzing experimental result of this method with other typical bipartite networks community partition algorithm on South women data set, We demonstrate the effectiveness of the proposed method.


Page Rank Bipartite networks Community division Information diffusion 


  1. 1.
    Guillaume, J.-L., Latapy, M., Le-Blond, S.: Statistical analysis of a P2P query graph based on degrees and their time-evolution. In: Sen, A., Das, N., Das, S.K., Sinha, B.P. (eds.) IWDC 2004. LNCS, vol. 3326, pp. 126–137. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Robins, G., Alexander, M.: Small worlds among interlocking directors: network structure and distance in bipartite graphs. Comput. Math. Organ. Theor. 10, 69–94 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Battiston, S., Catanzaro, M.: Statistical properties of corporate board and director networks. Eur. Phys. J. B 38, 345–352 (2005)CrossRefGoogle Scholar
  4. 4.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  5. 5.
    Ergun, G.: Human sexual contact network as a bipartite graph. Phys. A 308, 483–488 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Zhang, P., Li, M., Mendes J.F.F., et al.: Empirical analysis and evolving model of bipartite networks.
  7. 7.
    Lehmann, S., Schwartz, M., Hansen, L.K.: Biclique communities. Phys. Rev. E 69(2), 026113 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Guimera, R., Sales-Pardo, M., Amaral, L.A.: Module identification in bipartite and directed networks. Phys. Rev. E 76, 036102 (2007)CrossRefGoogle Scholar
  9. 9.
    Borgattia, S.P., Everettb, M.G.: Network analysis of 2-mod data. Soc. Netw. 19, 243–269 (1997)CrossRefGoogle Scholar
  10. 10.
    Barber, M.J.: Modularity and community detection in bipartite networks. Phys. Rev. E 76, 066102 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gao, M.: Binary network community discovery algorithm study. D. Hefei Industrial university, pp. 31–37 (2012)Google Scholar
  12. 12.
    Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007)CrossRefGoogle Scholar
  13. 13.
    Liu, X., Murata, T.: Community detection in large-scale bipartite networks. In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2009), Washington, DC, pp. 5–8. IEEE Computer Society (2009)Google Scholar
  14. 14.
    Du, N., Wang, B., Wu, B., et al.: Overlapping community detection in bipartite networks. In: International Conference on IEEE Web Intelligence and Intelligent Agent Technology, 2008, WI-IAT 2008, vol. 1, pp. 176–179. IEEE/WIC/ACM (2008)Google Scholar
  15. 15.
    Page, L., Brin, S., et al.: The pagerank citation ranking: bringing order to the web. R. Stanford DigitalGoogle Scholar
  16. 16.
    Richters, O., Peixoto, T.P.: Trust transitivity in social networks. PLoS ONE 6(4), 1–14 (2011)CrossRefGoogle Scholar
  17. 17.
    Yue, Z., Hongli, Z., Weizhe, Z., Junjia, L.: Identifying the influential users in network forum. J. Comput. Res. Dev. 50(10), 2195–2205 (2013)Google Scholar
  18. 18.
    Yuanzhe, C., Miao, Z., Dijun, L., Chris, D., Sharma, C.: Low-order tensor decompositions for social tagging recommendation. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining, New York, pp. 695–704 (2011)Google Scholar
  19. 19.
    Tong, Y., She, J., Chen, L.: Towards better understanding of app functions. J. Comput. Sci. Technol. 30(5), 1130–1140 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    She, J., Tong, Y., Chen, L.: Utility-aware event-participant planning. In: Proceedings of the 34th ACM SIGMOD International Conference on Management of Data (SIGMOD 2015), pp. 1629–1643 (2015)Google Scholar
  21. 21.
    She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-aware event-participant arrangement. In: Proceedings of the 31st International Conference on Data Engineering (ICDE 2015), pp. 735–746 (2015)Google Scholar
  22. 22.
    Newman, M.E.J.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. U.S.A. 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  23. 23.
    Davis, A., Gardner, B.B., Gardner, M.R.: Deep South. University of Chicago Press, Chicago (1941)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Fan Chunlong
    • 1
  • Song Yan
    • 1
  • Song Huimin
    • 1
  • Ding Guohui
    • 1
    Email author
  1. 1.Liaoning Provincial Key Lab of Large-scale Distributed SystemThe University of Shenyang AerospaceShenyanChina

Personalised recommendations