Skip to main content

Coordination of Self-organising Systems

  • Chapter
  • First Online:
Coordination of Complex Sociotechnical Systems

Abstract

In this chapter a novel approach to coordination in self-organising systems is described, which rethinks the basis of chemically inspired coordination, from both the engineering standpoint of coordination laws and primitives design, and from the scientific standpoint of relative linguistic expressiveness. Accordingly, first of all state of art literature regarding nature-inspired coordination is reviewed (Sects. 3.1 and 3.2), then the well-known local versus global issue in self-organising systems is dealt with by engineering coordination laws as artificial chemical reactions with custom kinetic rates (Sect. 3.3). After this, the impact of uniform coordination primitives on self-organising systems is discussed, experiments on their applicability are reported, and their formal semantics is defined (Sect. 3.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, the BTS model is an hybrid CTMC/DTMC model, since instantaneous transitions are allowed; please, refer to [49] for a thorough explanation.

  2. 2.

    FP7-ICT-2009.8.5: Self-awareness in Autonomic Systems.

  3. 3.

    Except repulsion/attraction, that has been left out since it can be engineered on top of diffusion.

  4. 4.

    http://en.wikipedia.org/wiki/Heaviside_step_function.

  5. 5.

    How the destination compartment is chosen is not relevant here.

References

  1. Alves, R., Antunes, F., Salvador, A.: Tools for kinetic modeling of biochemical networks. Nat. Biotechnol. 24(6), 667–672 (2006). doi:10.1038/nbt0606-667

    Article  Google Scholar 

  2. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator networks. Int. Syst. IEEE 21(2), 10–19 (2006)

    Article  Google Scholar 

  3. de Boer, F.S., Palamidessi, C.: Embedding as a tool for language comparison. Inf. Comput. 108(1), 128–157 (1994). doi:10.1006/inco.1994.1004

    Article  MathSciNet  MATH  Google Scholar 

  4. Bravetti, M.: Expressing priorities and external probabilities in process algebra via mixed open/closed systems. Electron. Notes Theor. Comput. Sci. 194(2), 31–57 (2008). doi:10.1016/j.entcs.2007.11.003

    Article  MathSciNet  MATH  Google Scholar 

  5. Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Quantitative information in the tuple space coordination model. Theoret. Comput. Sci. 346(1), 28–57 (2005). doi:10.1016/j.tcs.2005.08.004

    Article  MathSciNet  MATH  Google Scholar 

  6. Busi, N., Gorrieri, R., Zavattaro, G.: On the expressiveness of linda coordination primitives. Inf. Comput. 156(1), 90–121 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination architecture for mobile agents. IEEE Int. Comput. 4(4), 26–35 (2000). doi:10.1109/4236.865084

    Article  Google Scholar 

  8. Cardelli, L.: On process rate semantics. Theor. Comput. Sci. 391(3), 190–215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Casadei, M., Viroli, M.: Toward approximate stochastic model checking of computational fields for pervasive computing systems. In: Pitt, J. (ed.) Self-Adaptive and Self-Organizing Systems Workshops (SASOW), pp. 199–204. IEEE CS (2013). doi:10.1109/SASOW.2012.42. 2012 IEEE Sixth International Conference (SASOW 2012), Lyon, France, 10-14 Sep. 2012. Proceedings

  10. Casadei, M., Viroli, M., Gardelli, L.: On the collective sort problem for distributed tuple spaces. Sci. Comput. Program. 74(9), 702–722 (2009). doi:10.1016/j.scico.2008.09.018

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33–34), 3065–3084 (2009). doi:10.1016/j.tcs.2009.02.037. Concurrent Systems Biology: To Nadia Busi (1968–2007)

    Google Scholar 

  12. De Nicola, R., Latella, D., Katoen, J.P., Massink, M.: StoKlaim: A stochastic extension of Klaim. Tech. Rep. 2006-TR-01, Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo” (ISTI) (2006). http://www1.isti.cnr.it/~Latella/StoKlaim.pdf

  13. De Wolf, T., Holvoet, T.: Design patterns for decentralised coordination in self-organising emergent systems. In: Engineering Self-organising Systems, pp. 28–49. Springer (2007)

    Google Scholar 

  14. Denti, E., Natali, A., Omicini, A.: Programmable coordination media. In: Garlan, D., Le Métayer, D. (eds.) Coordination Languages and Models, LNCS, vol. 1282, pp. 274–288. Springer (1997). doi:10.1007/3-540-63383-9

    Google Scholar 

  15. Denti, E., Natali, A., Omicini, A.: On the expressive power of a language for programming coordination media. In: 1998 ACM Symposium on Applied Computing (SAC’98), pp. 169–177. ACM, Atlanta, GA, USA (1998)

    Google Scholar 

  16. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic KLAIM. In: De Nicola, R., Ferrari, G.L., Meredith, G. (eds.) Coordination Models and Languages, LNCS, vol. 2949, pp. 119–134. Springer Berlin/Heidelberg (2004). doi:10.1007/978-3-540-24634-3

  17. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic Linda-based coordination languages. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) 3rd International Conference on Formal Methods for Components and Objects (FMCO’04), LNCS, vol. 3657, pp. 120–140. Springer, Berlin, Heidelberg (2005). doi:10.1007/11561163

    Google Scholar 

  18. Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G. (eds.) Encyclopedia of Machine Learning, pp. 36–39. Springer US (2010). doi:10.1007/978-0-387-30164-8

  19. Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Arcos, J.L.: Infrastructureless spatial storage algorithms. ACM Trans. Auton. Adapt. Syst. (TAAS) 6(2), 15 (2011)

    Google Scholar 

  20. Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Montagna, S., Viroli, M., Arcos, J.L.: Description and composition of bio-inspired design patterns: a complete overview. Nat. Comput. 12(1), 43–67 (2013). doi:10.1007/s11047-012-9324-y

    Google Scholar 

  21. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S.: Bio-core: Bio-inspired self-organising mechanisms core. Bio-Inspired Models of Networks. Information, and Computing Systems, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 103, pp. 59–72. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  22. Gardelli, L., Viroli, M., Casadei, M., Omicini, A.: Designing self-organising MAS environments: The collective sort case. In: D. Weyns, H.V.D. Parunak, F. Michel (eds.) Environments for MultiAgent Systems III, LNAI, vol. 4389, pp. 254–271. Springer (2007). doi:10.1007/978-3-540-71103-2

    Google Scholar 

  23. Gardelli, L., Viroli, M., Omicini, A.: On the role of simulations in engineering self-organising MAS: The case of an intrusion detection system in TuCSoN. In: Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) Engineering Self-Organising Systems, LNAI, vol. 3910, pp. 153–168. Springer, Berlin, Heidelberg (2006). doi:10.1007/11734697. 3rd International Workshop (ESOA 2005), Utrecht, The Netherlands, 26 July 2005. Revised Selected Papers

    Google Scholar 

  24. Gardelli, L., Viroli, M., Omicini, A.: Combining simulation and formal tools for developing self-organizing MAS. In: Uhrmacher, A.M., Weyns, D. (eds.) Multi-Agent Systems: Simulation and Applications, Computational Analysis, Synthesis, and Design of Dynamic Systems, Chap. 5, pp. 133–165. CRC Press (2009). http://crcpress.com/product/isbn/9781420070231

  25. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7(1), 80–112 (1985). doi:10.1145/2363.2433

    Article  MATH  Google Scholar 

  26. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977). doi:10.1021/j100540a008

    Article  Google Scholar 

  27. Gilmore, S., Hillston, J.: The PEPA workbench: A tool to support a process algebra-based approach to performance modelling. In: Haring, G., Kotsis, G. (eds.) Computer Performance Evaluation Modelling Techniques and Tools, Lecture Notes in Computer Science, vol. 794, pp. 353–368. Springer, Berlin, Heidelberg (1994). doi:10.1007/3-540-58021-2

    Google Scholar 

  28. Hermanns, H.: Interactive Markov Chains: And the Quest for Quantified Quality. Springer (2002)

    Google Scholar 

  29. Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F.: Case studies for self-organization in computer science. J. Syst. Architect. 52(8), 443–460 (2006)

    Article  Google Scholar 

  30. Mariani, S.: On the “local-to-global” issue in self-organisation: Chemical reactions with custom kinetic rates. In: Eighth IEEE International Conference on Self-adaptive and Self-organizing Systems Workshops, SASOW 2014, Eighth IEEE International Conference on Self-Adaptive and Self-organizing Systems Workshops, SASOW 2014, pp. 61–67. IEEE, London, UK (2014). doi:10.1109/SASOW.2014.14. Best student paper award

  31. Mariani, S., Omicini, A.: Probabilistic embedding: Experiments with tuple-based probabilistic languages. In: 28th ACM Symposium on Applied Computing (SAC 2013), pp. 1380–1382. Coimbra, Portugal (2013). doi:10.1145/2480362.2480621. Poster Paper

  32. Mariani, S., Omicini, A.: Probabilistic modular embedding for stochastic coordinated systems. In: Julien, C., De Nicola, R. (eds.) Coordination Models and Languages, LNCS, vol. 7890, pp. 151–165. Springer (2013). doi:10.1007/978-3-642-38493-6. 15th International Conference (COORDINATION 2013), Florence, Italy, 3–6 June 2013. Proceedings

    Google Scholar 

  33. Mariani, S., Omicini, A.: Coordination mechanisms for the modelling and simulation of stochastic systems: The case of uniform primitives. SCS M&S Magazine IV, 6–25 (2014). Special Issue on “Agents and Multi-Agent Systems: From Objects to Agents”

    Google Scholar 

  34. Merelli, E., Armano, G., Cannata, N., Corradini, F., d’Inverno, M., Doms, A., Lord, P., Martin, A., Milanesi, L., Möller, S., Schroeder, M., Luck, M.: Agents in bioinformatics, computational and systems biology. Briefings Bioinf. 8(1), 45–59 (2007). doi:10.1093/bib/bbl014

    Article  Google Scholar 

  35. Minsky, N.H., Ungureanu, V.: Law-Governed interaction: A coordination and control mechanism for heterogeneous distributed systems. ACM Trans. Soft. Eng. Methodol. (TOSEM) 9(3), 273–305 (2000). doi:10.1145/352591.352592

    Article  Google Scholar 

  36. Nagpal, R.: A catalog of biologically-inspired primitives for engineering self-organization. In: Engineering Self-organising Systems, pp. 53–62. Springer (2004)

    Google Scholar 

  37. Nardini, E., Omicini, A., Viroli, M.: Description spaces with fuzziness. In: Palakal, M.J., Hung, C.C., Chu, W., Wong, W.E. (eds.) 26th Annual ACM Symposium on Applied Computing (SAC 2011), vol. II: Artificial Intelligence & Agents, Information Systems, and Software Development, pp. 869–876. ACM, Tunghai University, TaiChung, Taiwan (2011). doi:10.1145/1982185.1982375

  38. Omicini, A.: Formal ReSpecT in the A&A perspective. Electron. Notes Theor. Comput. Sci. 175(2), 97–117 (2007). doi:10.1016/j.entcs.2007.03.006

    Article  Google Scholar 

  39. Omicini, A.: Nature-inspired coordination for complex distributed systems. In: Intelligent Distributed Computing VI, pp. 1–6. Springer (2013)

    Google Scholar 

  40. Omicini, A.: Nature-inspired coordination models: Current status, future trends. ISRN Softw. Eng. 2013 (2013). doi:10.1155/2013/384903

    Google Scholar 

  41. Omicini, A., Denti, E.: Formal ReSpecT. Electron. Notes Theor. Comput. Sci. 48, 179–196 (2001). doi:10.1016/S1571-0661(04)00156-2

    Article  MATH  Google Scholar 

  42. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Sci. Comput. Program. 41(3), 277–294 (2001). doi:10.1016/S0167-6423(01)00011-9

    Article  MATH  Google Scholar 

  43. Omicini, A., Viroli, M.: Coordination models and languages: From parallel computing to self-organisation. Knowl. Eng. Rev. 26(1), 53–59 (2011). doi:10.1017/S026988891000041X

    Article  Google Scholar 

  44. Omicini, A., Zambonelli, F.: Coordination for Internet application development. Auton. Agent. Multi-Agent Syst. 2(3), 251–269 (1999). doi:10.1023/A:1010060322135

    Article  Google Scholar 

  45. Parunak, H.V.D., Brueckner, S., Sauter, J.: Digital pheromone mechanisms for coordination of unmanned vehicles. In: Castelfranchi, C., Johnson, W.L. (eds.) 1st International Joint Conference on Autonomous Agents and Multiagent systems, vol. 1, pp. 449–450. ACM, New York, NY, USA (2002). http://dx.doi.org/10.1145/544741.544843

  46. Pérez, P.G., Omicini, A., Sbaraglia, M.: A biochemically inspired coordination-based model for simulating intracellular signalling pathways. J. Simul. 7(3), 216–226 (2013)

    Article  Google Scholar 

  47. Shapiro, E.: Separating concurrent languages with categories of language embeddings. In: 23rd Annual ACM Symposium on Theory of Computing (STOC’91), pp. 198–208. ACM, New York, NY, USA (1991). doi:10.1145/103418.103423

  48. Tchao, A.E., Risoldi, M., Di Marzo Serugendo, G.: Modeling self-* systems using chemically-inspired composable patterns. In: Self-Adaptive and Self-organizing Systems (SASO), 2011 Fifth IEEE International Conference on, pp. 109–118 (2011). doi:10.1109/SASO.2011.22

  49. Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination. In: Field, J., Vasconcelos, V.T. (eds.) Coordination Languages and Models, LNCS, vol. 5521, pp. 143–162. Springer, Lisbon, Portugal (2009). doi:10.1007/978-3-642-02053-7

    Google Scholar 

  50. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of pervasive services through chemical-inspired tuple spaces. ACM Trans. Auton. Adapt. Syst. 6(2), 14:1–14:24 (2011). doi:10.1145/1968513.1968517

    Google Scholar 

  51. Viroli, M., Casadei, M., Omicini, A.: A framework for modelling and implementing self-organising coordination. In: Shin, S.Y., Ossowski, S., Menezes, R., Viroli, M. (eds.) 24th Annual ACM Symposium on Applied Computing (SAC 2009), vol. III, pp. 1353–1360. ACM, Honolulu, Hawai’i, USA (2009). doi:10.1145/1529282.1529585

  52. Wegner, P.: Why interaction is more powerful than algorithms. Commun. ACM 40(5), 80–91 (1997). doi:10.1145/253769.253801

    Article  Google Scholar 

  53. Wegner, P., Goldin, D.: Computation beyond Turing machines. Commun. ACM 46(4), 100–102 (2003). doi:10.1145/641205.641235

    Article  Google Scholar 

  54. Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., DeAngelis, F.L., Di Marzo Serugendo, G., Dobson, S., Fernandez-Marquez, J.L., Ferscha, A., Mamei, M., Mariani, S., Ye, J.: Developing pervasive multi-agent systems with nature-inspired coordination. Pervasive Mob. Comput. 17, 236–252 (2015). doi:10.1016/j.pmcj.2014.12.002. Special Issue “10 years of Pervasive Computing” In Honor of Chatschik Bisdikian

    Google Scholar 

  55. Zambonelli, F., Viroli, M.: Architecture and metaphors for eternally adaptive service ecosystems. In: Intelligent Distributed Computing, Systems and Applications, Studies in Computational Intelligence, vol. 162/2008, pp. 23–32. Springer (2008). doi:10.1007/978-3-540-85257-5. 2nd International Symposium on Intelligent Distributed Computing (IDC 2008), Catania, Italy, 18–19 Sep. 2008. Proceedings

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Mariani .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Mariani, S. (2016). Coordination of Self-organising Systems. In: Coordination of Complex Sociotechnical Systems. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer, Cham. https://doi.org/10.1007/978-3-319-47109-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47109-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47108-2

  • Online ISBN: 978-3-319-47109-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics