Skip to main content

Clique Identification and Propagation for Multimodal Brain Tumor Image Segmentation

  • Conference paper
  • First Online:
Brain Informatics and Health (BIH 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9919))

Included in the following conference series:

Abstract

Brain tumors vary considerably in size, morphology, and location across patients, thus pose great challenge in automated brain tumor segmentation methods. Inspired by the concept of clique in graph theory, we present a clique-based method for multimodal brain tumor segmentation that considers a brain tumor image as a graph and automatically segment it into different sub-structures based on the clique homogeneity. Our proposed method has three steps, neighborhood construction, clique identification, and clique propagation. We constructed the neighborhood of each pixel based on its similarities to the surrounding pixels, and then extracted all cliques with a certain size k to evaluate the correlations among different pixels. The connections among all cliques were represented as a transition matrix, and a clique propagation method was developed to group the cliques into different regions. This method is also designed to accommodate multimodal features, as multimodal neuroimaging data is widely used in mapping the tumor-induced changes in the brain. To evaluate this method, we conduct the segmentation experiments on the publicly available Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) dataset. The qualitative and quantitative results demonstrate that our proposed clique-based method achieved better performance compared to the conventional pixel-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holland, E.C.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14, 683–688 (2001)

    Article  Google Scholar 

  2. Angelini, E.D., Clatz, O., Mandonnet, E., Konukoglu, E., Capelle, L., Duffau, H.: Glioma dynamics, computational models,: a review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr. Med. Imaging Rev. 3(4), 262–276 (2007)

    Article  Google Scholar 

  3. Bauer, S., Wiest, R., Nolte, L.P., Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), 97–129 (2013)

    Article  Google Scholar 

  4. Liu, S., Cai, W., Liu, S.Q., Zhang, F., Fulham, M.J., Feng, D., et al.: Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders. Brain Inform. 2(3), 167–180 (2015)

    Article  Google Scholar 

  5. Liu, S., Cai, W., Liu, S.Q., Zhang, F., Fulham, M.J., Feng, D., et al.: Multimodal neuroimaging computing: the workflows, methods, and platforms. Brain Inform. 2(3), 181–195 (2015)

    Article  Google Scholar 

  6. Menze, B., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  7. Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans. Med. Imaging 27(5), 629–640 (2008)

    Article  Google Scholar 

  8. Pohl, K.M., Fisher, J., Levitt, J.J., Shenton, M.E., Kikinis, R., Grimson, W.E.L., Wells, W.M.: A unifying approach to registration, segmentation, and intensity correction. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 310–318. Springer, Heidelberg (2005). doi:10.1007/11566465_39

    Chapter  Google Scholar 

  9. Parisot, S., Duffau, H., Chemouny, S., Paragios, N.: Graph-based detection, segmentation & characterization of brain tumors. In: CVPR, pp. 988–995. IEEE (2012)

    Google Scholar 

  10. Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., Comaniciu, D.: A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 67–75. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85988-8_9

    Chapter  Google Scholar 

  11. Pohl, K.M., Bouix, S., Kikinis, R., Grimson, W.E.L.: Anatomical guided segmentation with non-stationary tissue class distributions in an expectation-maximization framework. In: ISBI, pp. 81–84. IEEE (2004)

    Google Scholar 

  12. Liu, S., Cai, W., Wen, L., Eberl, S., Fulham, M.J., Feng, D.: A robust volumetric feature extraction approach for 3D neuroimaging retrieval. In: EMBC, pp. 5657–5660. IEEE (2010)

    Google Scholar 

  13. Cai, W., Liu, S., Song, Y., Pujol, S., Kikinis, R., Feng, D.: A 3D difference-of-Gaussian-based lesion detector for brain PET. In: ISBI, pp. 677–680. IEEE (2014)

    Google Scholar 

  14. Liu, S., Jing, L., Cai, W., Wen, L., Eberl, S., Fulham, M.J., et al.: Localized multiscale texture based retrieval of neurological image. In: CBMS, pp. 243–248. IEEE (2010)

    Google Scholar 

  15. Liu, S., Cai, W., Wen, L., Eberl, S., Fulham, M.J., Feng, D.: Localized functional neuroimaging retrieval using 3D discrete curvelet transform. In: ISBI, pp. 1877–1880. IEEE (2011)

    Google Scholar 

  16. Ng, G., Song, Y., Cai, W., Zhou, Y., Liu, S., Feng, D.: Hierarchical and binary spatial descriptors for lung nodule image retrieval. In: EMBC, pp. 6463–6466. IEEE (2014)

    Google Scholar 

  17. Liu, S., Cai, W., Wen, L., Feng, D.: Volumetric congruent local binary patterns for 3D neurological image retrieval. In: International Conference on Image and Vision Computing New Zealand, pp. 272–276 (2011)

    Google Scholar 

  18. Liu, S., Cai, W., Wen, L., Feng, D.: Multiscale and multiorientation feature extraction with degenerative patterns for 3D neuroimaging retrieval. In: ICIP, pp. 1249–1252. IEEE (2012)

    Google Scholar 

  19. Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation 1. Ann. Rev. Biomed. Eng. 2, 315–337 (2000)

    Article  Google Scholar 

  20. Li, S.Z., Singh, S.: Markov Random Field Modeling in Image Analysis. Springer, London (2009)

    Google Scholar 

  21. Subbanna, N.K., Precup, D., Collins, D.L., Arbel, T.: Hierarchical probabilistic Gabor and MRF segmentation of brain tumours in MRI volumes. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 751–758. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40811-3_94

    Chapter  Google Scholar 

  22. Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23626-6_44

    Chapter  Google Scholar 

  23. West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  24. Zhang, F., Cai, W., Song, Y., Young, P., Traini, D., Morgan, L., et al.: Beating cilia identification in fluorescence microscope images for accurate CBF measurement. In: ICIP, 4496–4500. IEEE (2015)

    Google Scholar 

  25. Weizman, L., Sira, L.B., Joskowicz, L., Constantini, S., Precel, R., Shofty, B., et al.: Automatic segmentation, internal classification, and follow-up of optic pathway gliomas in MRI. Med. Image Anal. 16(1), 177–188 (2012)

    Article  Google Scholar 

  26. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)

    Article  Google Scholar 

  27. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: The Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Liu, S., Song, Y., Zhang, F., Feng, D., Fulham, M., Cai, W. (2016). Clique Identification and Propagation for Multimodal Brain Tumor Image Segmentation. In: Ascoli, G., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds) Brain Informatics and Health. BIH 2016. Lecture Notes in Computer Science(), vol 9919. Springer, Cham. https://doi.org/10.1007/978-3-319-47103-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47103-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47102-0

  • Online ISBN: 978-3-319-47103-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics