Skip to main content

Potentiality of Urinary L-FABP Tests to Kala-Azar Disease Management

  • Chapter
  • First Online:
Kala Azar in South Asia

Abstract

The diagnostic process of disease detection and disease management is different in every disease. Recently, the diagnostic procedure for visceral leishmaniasis (VL), also known as kala-azar, was simplified from a time-consuming pathological examination into a simple blood test. But the monitoring of disease activity during therapy still relies on clinical findings and classical laboratory data in endemic areas. In this chapter, we introduce and examine the utility of a urinary biomarker, fatty acid-binding protein 1 (FABP1) or alternatively L-type fatty acid-binding protein (L-FABP), for monitoring VL disease activities and drug-induced side effects. A FABP1 analysis developed as an enzyme-linked immunosorbent assay was transformed into a urinary immuno-chromatography dipstick test for point of care use in endemic areas. We expect that a FABP1 dipstick test will serve as a triage marker in disease monitoring of VL. In addition, this chapter introduces the impact of FABP1 on predicting survival in septic acute kidney injury and the clinical interpretation of FABP1 measurements in VL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sundar S, Singh RK, Maurya R, Kumar B, Chhabra A, Singh V, et al. Serological diagnosis of Indian visceral leishmaniasis: direct agglutination test versus rK39 strip test. Trans R Soc Trop Med Hyg. 2006;100(6):533–7.

    Article  CAS  PubMed  Google Scholar 

  2. Singh DP, Sundar S, Mohapatra TM. The rK39 strip test is non-predictor of clinical status for kala-azar. BMC Res Notes. 2009;2:187.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vaidya VS, Ferguson MA, Bonventre JV. Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol. 2008;48:463–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoste EA, Clermont G, Kersten A, Venkataraman R, Angus DC, De Bacquer D, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10(3):R73.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.

    Article  CAS  PubMed  Google Scholar 

  6. Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I, Moore P, et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2008;73(4):465–72.

    Article  CAS  PubMed  Google Scholar 

  7. Matsui K, Kamijo-Ikemori A, Sugaya T, Yasuda T, Kimura K. Usefulness of urinary biomarkers in early detection of acute kidney injury after cardiac surgery in adults. Circ J Off J Jpn Circ Soc. 2012;76(1):213–20.

    CAS  Google Scholar 

  8. Ichino M, Kuroyanagi Y, Kusaka M, Mori T, Ishikawa K, Shiroki R, et al. Increased urinary neutrophil gelatinase associated lipocalin levels in a rat model of upper urinary tract infection. J Urol. 2009;181(5):2326–31.

    Article  CAS  PubMed  Google Scholar 

  9. Alpizar-Alpizar W, Laerum OD, Illemann M, Ramirez JA, Arias A, Malespin-Bendana W, et al. Neutrophil gelatinase-associated lipocalin (NGAL/Lcn2) is upregulated in gastric mucosa infected with helicobacter pylori. Virchows Arch. 2009;455(3):225–33.

    Article  CAS  PubMed  Google Scholar 

  10. Bennett MR, Nehus E, Haffner C, Ma Q, Devarajan P. Pediatric reference ranges for acute kidney injury biomarkers. Pediatr Nephrol. 2015;30(4):677–85.

    Article  PubMed  Google Scholar 

  11. Noiri E, Doi K, Negishi K, Tanaka T, Hamasaki Y, Fujita T, et al. Urinary fatty acid-binding protein 1: an early predictive biomarker of kidney injury. Am J Physiol Renal Physiol. 2009;296(4):F669–79.

    Google Scholar 

  12. Negishi K, Noiri E, Doi K, Maeda-Mamiya R, Sugaya T, Portilla D, et al. Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury. Am J Pathol. 2009;174(4):1154–9.

    Google Scholar 

  13. Nakamura T, Sugaya T, Node K, Ueda Y, Koide H. Urinary excretion of liver-type fatty acid-binding protein in contrast medium-induced nephropathy. Am J Kidney Dis. 2006;47(3):439–44.

    Article  CAS  PubMed  Google Scholar 

  14. Dieterle F, Marrer E, Suzuki E, Grenet O, Cordier A, Vonderscher J. Monitoring kidney safety in drug development: emerging technologies and their implications. Curr Opin Drug Discov Devel. 2008;11(1):60–71.

    CAS  PubMed  Google Scholar 

  15. Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov. 2008;7(6):489–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Veerkamp JH, Paulussen RJ, Peeters RA, Maatman RG, van Moerkerk HT, van Kuppevelt TH. Detection, tissue distribution and (sub)cellular localization of fatty acid-binding protein types. Mol Cell Biochem. 1990;98(1–2):11–8.

    Article  CAS  PubMed  Google Scholar 

  17. Maatman RG, Van Kuppevelt TH, Veerkamp JH. Two types of fatty acid-binding protein in human kidney. Isolation, characterization and localization. Biochem J. 1991;273(Pt 3):759–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doi K, Suzuki Y, Nakao A, Fujita T, Noiri E. Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney. Kidney Int. 2004;65(5):1714–23.

    Google Scholar 

  19. Yamamoto T, Tada T, Brodsky SV, Tanaka H, Noiri E, Kajiya F, et al. Intravital videomicroscopy of peritubular capillaries in renal ischemia. Am J Physiol Renal Physiol. 2002;282(6):F1150–5.

    Article  CAS  PubMed  Google Scholar 

  20. Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T, et al. Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol. 2001;281(5):F948–57.

    Article  CAS  PubMed  Google Scholar 

  21. Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol. 2003;14(8):2199–210.

    Article  PubMed  Google Scholar 

  22. Yamamoto T, Noiri E, Ono Y, Doi K, Negishi K, Kamijo A, et al. Renal L-type fatty acid-binding protein in acute ischemic injury. J Am Soc Nephrol. 2007;18(11):2894–902.

    Google Scholar 

  23. Thurman JM, Parikh CR. Peeking into the black box: new biomarkers for acute kidney injury. Kidney Int. 2008;73(4):379–81.

    Article  CAS  PubMed  Google Scholar 

  24. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.

    Article  CAS  PubMed  Google Scholar 

  25. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348(16):1546–54.

    Article  PubMed  Google Scholar 

  26. Russell JA, Singer J, Bernard GR, Wheeler A, Fulkerson W, Hudson L, et al. Changing pattern of organ dysfunction in early human sepsis is related to mortality. Crit Care Med. 2000;28(10):3405–11.

    Article  CAS  PubMed  Google Scholar 

  27. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.

    Article  CAS  PubMed  Google Scholar 

  28. Doi K, Noiri E, Maeda-Mamiya R, Ishii T, Negishi K, Hamasaki Y, et al. Urinary L-type fatty acid-binding protein as a new biomarker of sepsis complicated with acute kidney injury. Crit Care Med. 2010;38(10):2037–42.

    Google Scholar 

  29. Doi K, Negishi K, Ishizu T, Katagiri D, Fujita T, Matsubara T, et al. Evaluation of new acute kidney injury biomarkers in a mixed intensive care unit. Crit Care Med. 2011;39(11):2464–9.

    Google Scholar 

  30. Cruz DN, Perazella MA, Bellomo R, de Cal M, Polanco N, Corradi V, et al. Effectiveness of polymyxin B-immobilized fiber column in sepsis: a systematic review. Crit Care. 2007;11(2):R47.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nakamura T, Sugaya T, Koide H. Urinary liver-type fatty acid-binding protein in septic shock: effect of polymyxin B-immobilized fiber hemoperfusion. Shock; 2008.

    Google Scholar 

  32. Tanaka T, Noiri E, Yamamoto T, Sugaya T, Negishi K, Maeda R, et al. Urinary human L-FABP is a potential biomarker to predict COX-inhibitor-induced renal injury. Nephron Exp Nephrol. 2008;108(1):e19–26.

    Article  CAS  PubMed  Google Scholar 

  33. Kamijo-Ikemori A, Sugaya T, Kimura K. Urinary fatty acid binding protein in renal disease. Clin Chim Acta. 2006;374(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  34. Hossain MI, Dodd NS, Ahmed T, Miah GM, Jamil KM, Nahar B, et al. Experience in managing severe malnutrition in a government tertiary treatment facility in Bangladesh. J Health Popul Nutr. 2009;27(1):72–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Haase-Fielitz A, Haase M, Bellomo R. Instability of urinary NGAL during long-term storage. Am J Kidney Dis. 2009;53(3):564–5; author reply 6.

    Google Scholar 

  36. Zgheib NK, Capitano B, Branch RA. Amphotericin B. In: DeBroe ME, Porter GA, Bennett WM, editors. Clinical nephrotoxins: renal injury from drugs and chemicals. Dordrecht: Springer; 2008. p. 323–52.

    Chapter  Google Scholar 

  37. Yamamoto T, Noiri E, Ono Y, Doi K, Negishi K, Kamijo A, et al. Renal L-type fatty acid binding protein in acute ischemic injury. J Am Soc Nephrol. 2007;18(11):2894–902.

    Google Scholar 

Download references

Acknowledgments

Part of this study was supported by Science and Technology Research Partnership for Sustainable Development from Japan Agency for Medical Research and Development (SATREPS, JST/JICA) (EN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisei Noiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Noiri, E., Hamasaki, Y., Tojo, B., Jamil, K.M., Doi, K., Sugaya, T. (2016). Potentiality of Urinary L-FABP Tests to Kala-Azar Disease Management. In: Noiri, E., Jha, T. (eds) Kala Azar in South Asia. Springer, Cham. https://doi.org/10.1007/978-3-319-47101-3_12

Download citation

Publish with us

Policies and ethics