Skip to main content

Playing Around Resonance

  • Chapter
  • First Online:
Playing Around Resonance

Part of the book series: Birkhäuser Advanced Texts Basler Lehrbücher ((BAT))

  • 988 Accesses

Abstract

In this chapter, we will consider again the periodic problem

$$\displaystyle{ (P)\quad \left \{\begin{array}{l} x^{{\prime\prime}} + g(t,x) = 0\,, \\ x(0) = x(T)\,,\;\;x^{{\prime}}(0) = x^{{\prime}}(T)\,, \end{array} \right. }$$

where \(g: [0,T] \times \mathbb{R} \rightarrow \mathbb{R}\) is a continuous function, and we will concentrate in finding sufficient conditions for the existence of a solution in the case when

$$\displaystyle{ g(t,x) =\lambda _{N}x + h(t,x)\,, }$$

where \(\lambda _{N} = \left (\frac{2\pi N} {T} \right )^{2}\) is an eigenvalue of the differential operator, and h is a bounded function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notation o(ɛ) used here has the following meaning: for some function R(ɛ; θ0 ),

    $$\displaystyle{ R(\varepsilon;\theta _{0}) = o(\varepsilon )\quad \Longleftrightarrow\quad \lim _{\varepsilon \rightarrow 0^{+}} \frac{1} {\varepsilon } R(\varepsilon;\theta _{0}) = 0\,,\quad \mbox{ uniformly in }\theta _{0} \in [0,\tau ]. }$$

Bibliography

  1. H. Brezis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa 5 (1978), 225–326.

    MathSciNet  MATH  Google Scholar 

  2. A. Capietto and Z. Wang, Periodic solutions of Liénard equations at resonance, Differential Integral Equations 16 (2003), 605–624.

    MathSciNet  MATH  Google Scholar 

  3. A. Capietto and Z. Wang, Periodic solutions of Liénard equations with asymmetric nonlinearities at resonance, J. London Math. Soc. 68 (2003), 119–132.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Drábek, Landesman–Lazer type condition and nonlinearities with linear growth, Czechoslovak Math. J. 40 (1990), 70–86.

    MathSciNet  MATH  Google Scholar 

  5. P. Drábek, Landesman–Lazer condition for nonlinear problems with jumping nonlinearities, J. Differential Equations 85 (1990), 186–199.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Fabry, Landesman–Lazer conditions for periodic boundary value problems with asymmetric nonlinearities, J. Differential Equations 116 (1995), 405–418.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Fabry and A. Fonda, Periodic solutions of nonlinear differential equations with double resonance, Ann. Mat. Pura Appl. 157 (1990), 99–116.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Fabry and A. Fonda, Nonlinear resonance in asymmetric oscillators, J. Differential Equations 147 (1998), 58–78.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Fabry and A. Fonda, Bifurcations from infinity in asymmetric nonlinear oscillators, NoDEA Nonlinear Differential Equations Appl. 7 (2000), 23–42.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Fabry and A. Fonda, Periodic solutions of perturbed isochronous Hamiltonian systems at resonance, J. Differential Equations 214 (2005), 299–325.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Fabry and J. Mawhin, Oscillations of a forced asymmetric oscillator at resonance, Nonlinearity 13 (2000), 493–505.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Fonda, Positively homogeneous Hamiltonian systems in the plane, J. Differential Equations 200 (2004), 162–184.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Fonda, Topological degree and generalized asymmetric oscillators, Topol. Methods Nonlinear Anal. 28 (2006), 171–188.

    MathSciNet  MATH  Google Scholar 

  14. A. Fonda and M. Garrione, Double resonance with Landesman–Lazer conditions for planar systems of ordinary differential equations, J. Differential Equations 250 (2011), 1052–1082.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Fonda and J. Mawhin, Planar differential systems at resonance, Adv. Differential Equations 11 (2006), 1111–1133.

    MathSciNet  MATH  Google Scholar 

  16. M. Garrione, Resonance at the first eigenvalue for first-order systems in the plane: vanishing Hamiltonians and the Landesman–Lazer condition, Differential Integral Equations 25 (2012), 505–526.

    MathSciNet  MATH  Google Scholar 

  17. P. Hess, On a theorem by Landesman and Lazer, Indiana Univ. Math. J. 23 (1974), 827–830.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Iannacci and M.N. Nkashama, Nonlinear boundary value problems at resonance, Nonlinear Anal. 11 (1987), 455–473.

    Article  MathSciNet  MATH  Google Scholar 

  19. E.M. Landesman and A.C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609–623.

    MathSciNet  MATH  Google Scholar 

  20. A.C. Lazer and D.E. Leach, Bounded perturbations of forced harmonic oscillators at resonance, Ann. Mat. Pura Appl. 82 (1969), 49–68.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Mawhin, Landesman–Lazer’s type problems for nonlinear equations, Confer. Sem. Mat. Univ. Bari 147 (1977), 1–22.

    MathSciNet  MATH  Google Scholar 

  22. J. Nečas, On the range of nonlinear operators with linear asymptotes which are not invertible, Comment. Math. Univ. Carolinae 14 (1973), 63–72.

    MathSciNet  MATH  Google Scholar 

  23. R. Ortega, Periodic perturbations of an isochronous center, Qual. Theory Dynam. Systems 3 (2002), 83–91.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Tomiczek, A generalization of the Landesman–Lazer condition, Electron. J. Differential Equations 4 (2001), 1–11.

    MathSciNet  MATH  Google Scholar 

  25. P. Tomiczek, Potential Landesman–Lazer type conditions and the Fučík spectrum, Electron. J. Differential Equations 94 (2005), 1–12.

    MathSciNet  MATH  Google Scholar 

  26. S.A. Williams, A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem, J. Differential Equations 8 (1970), 580–588.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Fonda, A. (2016). Playing Around Resonance. In: Playing Around Resonance. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-47090-0_6

Download citation

Publish with us

Policies and ethics