Skip to main content

Introduction

  • Chapter
  • First Online:
  • 532 Accesses

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

The investigation of the strategies of human motor control in grasping task represents a relevant topic in neuroscience with applications in robotics. Such an investigation requires the development and the exploitation of sensing tools and devices, which are able to record all the necessary information, and for this purpose, new custom devices are developed and exploited. The ambitious goal of this work is twofold: (1) to advance the state of the art on human strategies in manipulation tasks and provide tools to assess rehabilitation procedure and (2) to investigate human strategies for impedance control that can be used for human robot interaction and control of myoelectric prosthesis. Although the goal complexity requires many efforts, this book achieved tangible and original contributions that are suitable for robotic/prosthetic and human motor control studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.P. Kuhtz-Buschbeck, H.H. Ehrsson, H. Forssberg, Human brain activity in the control of fine static precision grip forces: an fmri study. Eur. J. Neurosci. 14(2), 382–390 (2001)

    Article  Google Scholar 

  2. R.S. Johansson, J.R. Flanagan, Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009)

    Article  Google Scholar 

  3. D.M. Wolpert, J. Diedrichsen, J.R. Flanagan, Principles of sensorimotor learning’. Nat. Rev. Neurosci. 12(12), 739–751 (2011)

    Google Scholar 

  4. M. Santello, M. Flanders, J.F. Soechting, Postural hand synergies for tool use. J. Neurosci. 18(23), 10 105–10 115 (1998)

    Google Scholar 

  5. M. Gabiccini, A. Bicchi, On the role of hand synergies in the optimal choice of grasping forces, in Robotics Science and Systems (2010)

    Google Scholar 

  6. A. Bicchi, M. Gabiccini, M. Santello, Modelling natural and artificial hands with sinergie. Philos. Trans. R. Soc. B 366, 3153–3161 (2011)

    Article  Google Scholar 

  7. M.G. Catalano, G. Grioli, A. Serio, E. Farnioli, C. Piazza, A. Bicchi, Adaptive synergies for a humanoid robot hand, in IEEE-RAS International Conference on Humanoid Robots, Osaka, Japan (in Press)

    Google Scholar 

  8. V.M. Zatsiorsky, M.L. Latash, Multifinger prehension: an overview. J. Motor Behav. 40(5), 446–476 (2008)

    Article  Google Scholar 

  9. J.R. Flanagan, M.K. Burstedt, R.S. Johansson, Control of fingertip forces in multidigit manipulation. J. Neurophysiol. 81(4), 1706–1717 (1999)

    Google Scholar 

  10. G. Baud-Bovy, J.F. Soechting, Two virtual fingers in the control of the tripod grasp. J. Neurophysiol. 86(2), 604–615 (2001)

    Google Scholar 

  11. G. Baud-Bovy, J.F. Soechting, Factors influencing variability in load forces in a tripod grasp. Exp. Brain Res. 143(1), 57–66 (2002)

    Article  Google Scholar 

  12. S.A. Winges, S.E. Eonta, J.F. Soechting, M. Flanders, Effects of object compliance on three-digit grasping. J. Neurophysiol. 101(5), 2447–2458 (2009)

    Article  Google Scholar 

  13. M. Santello, J.F. Soechting, Force synergies for multifingered grasping. Exp. Brain Res. 133(4), 457–467 (2000)

    Article  Google Scholar 

  14. W. Zhang, A.M. Gordon, Q. Fu, M. Santello, Manipulation after object rotation reveals independent sensorimotor memory representations of digit positions and forces. J. Neurophysiol. 103(6), 2953–2964 (2010)

    Article  Google Scholar 

  15. Q. Fu, Z. Hasan, M. Santello, Transfer of learned manipulation following changes in degrees of freedom. J. Neurosci. 31(38), 13 576–13 584 (2011)

    Article  Google Scholar 

  16. L. Dipietro, A.M. Sabatini, P. Dario, A survey of glovebased systems and their applications. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 38(4), 461–482 (2008)

    Article  Google Scholar 

  17. T.R. Grieve, J.M. Hollerbach, S.A. Mascaro, Force prediction by fingernail imaging using active appearance models, in World Haptics Conference (WHC), 2013 (IEEE, 2013), pp. 181–186

    Google Scholar 

  18. P.S. Lum, C.G. Burgar, P.C. Shor, M. Majmundar, M.V. der Loos, Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upperlimb motor function after stroke. Arch. Phys. Med. Rehabil. 83(7), 952–959 (2002)

    Article  Google Scholar 

  19. H.I. Krebs, B. Volpe, M. Ferraro, S. Fasoli, J. Palazzolo, B. Rohrer, L. Edelstein, N. Hogan, Robot-aided neurorehabilitation: from evidence-based to science-based rehabilitation. Top. Stroke Rehabil. 8(4), 54–70 (2002)

    Article  Google Scholar 

  20. F. Carpi, G. Frediani, C. Gerboni, J. Gemignani, D. De Rossi, Enabling variable-stiffness hand rehabilitation orthoses with dielectric elastomer transducers. Med. Eng. Phys. 36(2), 205–211 (2014)

    Article  Google Scholar 

  21. J.-C. Metzger, O. Lambercy, R. Gassert, High-fidelity rendering of virtual objects with the rehapticknob-novel avenues in robot-assisted rehabilitation of hand function, in Haptics Symposium (haptics), 2012 (IEEE, 2012), pp. 51–56

    Google Scholar 

  22. D.R. Humphrey, D.J. Reed, Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles. Adv. Neurol. 39, 347–372 (1983)

    Google Scholar 

  23. A.E. Fiorilla, F. Nori, L. Masia, G. Sandini, Finger impedance evaluation by means of hand exoskeleton. Ann. Biomed. Eng. 39(12), 2945–2954 (2011)

    Article  Google Scholar 

  24. A.Z. Hajian, R.D. Howe, Identification of the mechanical impedance at the human finger tip. J. Biomech. Eng. 119(1), 109–114 (1997)

    Article  Google Scholar 

  25. H. Hoppner, D. Lakatos, H. Urbanek, C. Castellini, P. van der Smagt, The grasp perturbator: calibrating human grasp stiffness during a graded force task, in 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011), pp. 3312–3316

    Google Scholar 

  26. T.E. Milner, D.W. Franklin, Characterization of multijoint finger stiffness: Dependence on finger posture and force direction. IEEE Trans. Biomed. Eng. 45(11), 1363–1375 (1998)

    Article  Google Scholar 

  27. P. Buttolo, Characterization of human pen grasp with haptic displays, Ph.D. thesis, Citeseer (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Altobelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Altobelli, A. (2016). Introduction. In: Haptic Devices for Studies on Human Grasp and Rehabilitation. Springer Series on Touch and Haptic Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-47087-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47087-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47086-3

  • Online ISBN: 978-3-319-47087-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics