Skip to main content

A Multi-haem Flavoenzyme as a Solar Conversion Catalyst

  • Chapter
  • First Online:
Metalloenzymes as Inspirational Electrocatalysts for Artificial Photosynthesis

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The enzyme flavocytochrome c 3 (fcc3), which catalyses hydrogenation across a C=C double bond (fumarate to succinate), is used to carry out the fuel-forming reaction in an artificial photosynthetic system. When immobilised on dye-sensitised TiO2 nanoparticles, fcc3 catalyses visible-light-driven succinate production in aqueous suspension. Solar-to-chemical conversion using neutral water as the oxidant is achieved with a photoelectrochemical cell comprising an fcc3-modified indium tin oxide cathode linked to a BiVO4 photoanode coated with a cobalt phosphate surface electrocatalyst. The results reinforce new directions in the area of artificial photosynthesis, in particular for solar-energy-driven synthesis of organic chemicals and commodities, moving away from simple fuels as target molecules.

Part of the work presented in this chapter has been published: Andreas Bachmeier, Bonnie J. Murphy, and Fraser A. Armstrong, J. Am. Chem. Soc. 2014, 136, 12876.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci U S A 103:15729

    Article  CAS  Google Scholar 

  2. Khaselev O, Turner JA (1998) Science 280:425

    Article  CAS  Google Scholar 

  3. Jacobsson TJ, Fjallstrom V, Sahlberg M, Edoff M, Edvinsson T (2013) Energy Environ Sci 6:3676

    Article  CAS  Google Scholar 

  4. Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, Tilley SD, Fan HJ, Grätzel M (2014) Science 345:1593

    Article  CAS  Google Scholar 

  5. Cox CR, Lee JZ, Nocera DG, Buonassisi T (2014) Proc Natl Acad Sci U S A 111:14057

    Article  CAS  Google Scholar 

  6. Abdi FF, Han L, Smets AHM, Zeman M, Dam B, van de Krol R (2013) Nat Commun 4:2195

    Article  Google Scholar 

  7. Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Science 334:645

    Article  CAS  Google Scholar 

  8. Cuendet P, Grätzel M (1984) Photochem Photobiol 39:609

    Article  CAS  Google Scholar 

  9. Kim Y, Ikebukuro K, Muguruma H, Karube I (1998) J Biotechnol 59:213

    Article  CAS  Google Scholar 

  10. Jiang Z, Lü C, Wu H (2005) Ind Eng Chem Res 44:4165

    Article  CAS  Google Scholar 

  11. Lu J, Li H, Cui D, Zhang Y, Liu S (2014) Anal Chem 86:8003

    Article  CAS  Google Scholar 

  12. Song W, Vannucci AK, Farnum BH, Lapides AM, Brennaman MK, Kalanyan B, Alibabaei L, Concepcion JJ, Losego MD, Parsons GN, Meyer TJ (2014) J Am Chem Soc 136:9773

    Article  CAS  Google Scholar 

  13. Archer MD, Barber J (2004) In: Archer MD, Barber J (eds) Molecular to Global Photosynthesis. Imperial College Press, London, p 1

    Google Scholar 

  14. Taylor P, Pealing SL, Reid GA, Chapman SK, Walkinshaw MD (1999) Nat Struct Mol Biol 6:1108

    Article  CAS  Google Scholar 

  15. Bachmeier A, Murphy BJ, Armstrong FA (2014) A Multi-Heme Flavoenzyme as a Solar Conversion Catalyst. J Am Chem Soc 136:12876

    Google Scholar 

  16. Morris CJ, Black AC, Pealing SL, Manson FD, Chapman SK, Reid GA, Gibson DM, Ward FB (1994) Biochem J 302:587

    Google Scholar 

  17. Kato M, Cardona T, Rutherford AW, Reisner E (2012) J Am Chem Soc 134:8332

    Article  CAS  Google Scholar 

  18. Hoertz PG, Chen Z, Kent CA, Meyer T (2010) J Inorg Chem 49:8179

    Article  CAS  Google Scholar 

  19. Hexter SV, Grey F, Happe T, Climent V, Armstrong FA (2012) Proc Natl Acad Sci U S A 109:11516

    Article  CAS  Google Scholar 

  20. Murphy BJ, Sargent F, Armstrong FA (2014) Energy Environ Sci 7:1426

    Article  CAS  Google Scholar 

  21. Bachmeier A, Wang VC-C, Woolerton TW, Bell S, Fontecilla-Camps JC, Can M, Ragsdale SW, Chaudhary YS, Armstrong FA (2013) J Am Chem Soc 135:15026

    Article  CAS  Google Scholar 

  22. Turner KL, Doherty MK, Heering HA, Armstrong FA, Reid GA, Chapman SK (1999) Biochemistry 38:3302

    Article  CAS  Google Scholar 

  23. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446

    Article  CAS  Google Scholar 

  24. Bachmeier A, Hall S, Ragsdale SW, Armstrong FA (2014) J Am Chem Soc 136:13518

    Article  CAS  Google Scholar 

  25. Reisner E, Fontecilla-Camps JC, Armstrong FA (2009) Chem Commun 550

    Google Scholar 

  26. Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) J Am Chem Soc 132:2132

    Article  CAS  Google Scholar 

  27. Gross MA, Reynal A, Durrant JR, Reisner E (2014) J Am Chem Soc 136:356

    Article  CAS  Google Scholar 

  28. Lemon BI, Liu F, Hupp JT (2004) Coord Chem Rev 248:1225

    Article  CAS  Google Scholar 

  29. Park H, Bae E, Lee J-J, Park J, Choi W (2006) J Phys Chem B 110:8740

    Article  CAS  Google Scholar 

  30. Ye H, Park HS, Bard AJ (2011) J Phys Chem C 115:12464

    Article  CAS  Google Scholar 

  31. Hong SJ, Lee S, Jang JS, Lee JS (2011) Energy Environ Sci 4:1781

    Google Scholar 

  32. Kanan MW, Nocera DG (2008) Science 321:1072

    Google Scholar 

  33. Zhong DK, Cornuz M, Sivula K, Gratzel M, Gamelin DR (2011) Energy Environ Sci 4:1759

    Google Scholar 

  34. Abdi FF, Firet N van de Krol R (2013) ChemCatChem 5:490

    Article  CAS  Google Scholar 

  35. Liang Y, Tsubota T, Mooij LPA, van de Krol R (2011) J Phys Chem C 115:17594

    Article  CAS  Google Scholar 

  36. Abdi FF, van de Krol R (2012) J Phys Chem C 116:9398

    Article  CAS  Google Scholar 

  37. Han L, Abdi FF, van de Krol R, Liu R, Huang Z, Lewerenz H-J, Dam B, Zeman M, Smets AHM (2014) ChemSusChem 7:2832

    Google Scholar 

  38. Pendlebury SR (2015) In: ISF-1 Young. Uppsala

    Google Scholar 

  39. Barroso M, Mesa CA, Pendlebury SR, Cowan AJ, Hisatomi T, Sivula K, Grätzel M, Klug DR, Durrant JR (2012) Proc Natl Acad Sci U S A 109:15640

    Article  CAS  Google Scholar 

  40. Chen Z, Dinh HN, Miller E (2013) Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. Springer

    Google Scholar 

  41. Bornoz P, Abdi FF, Tilley SD, Dam B, van de Krol R, Grätzel M, Sivula K (2014) J Phys Chem C 118:16959

    Article  CAS  Google Scholar 

  42. Iwase A, Kudo A (2010) J Mater Chem 20:7536

    Article  CAS  Google Scholar 

  43. Kim TW, Choi K-S (2014) Science 343:990

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas S. J. L. Bachmeier .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bachmeier, A.S.J.L. (2017). A Multi-haem Flavoenzyme as a Solar Conversion Catalyst. In: Metalloenzymes as Inspirational Electrocatalysts for Artificial Photosynthesis . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-47069-6_6

Download citation

Publish with us

Policies and ethics