Selective Visible-Light-Driven CO2 Reduction on a p-Type Dye-Sensitised NiO Photocathode
Chapter
First Online:
- 384 Downloads
Abstract
Building on the principles of protein film electrochemistry on semiconductor electrodes established in Chap. 4, a photocathode assembly for the visible-light-driven, selective reduction of CO2 to CO at potentials below the thermodynamic equilibrium in the dark is presented in this chapter. The photoelectrode comprises a porous p-type semiconducting NiO electrode modified with the visible-light responsive organic dye P1 and CODH as reversible CO2 cycling enzyme. The direct electrochemistry of the enzymatic electrocatalyst on NiO shows that in the dark the electrocatalytic behaviour is rectified towards CO oxidation, with the reactivity being governed by the carrier availability on the semiconductor/catalyst interface.
Keywords
Hole Injection Semiconductor Electrode Artificial Photosynthesis Geminate Recombination Photocurrent Enhancement
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Bachmeier A, Hall S, Ragsdale SW, Armstrong FA (2014) J Am Chem Soc 136:13518Google Scholar
- 2.Odobel F, Pellegrin Y (2013) J Phys Chem Lett 4:2551CrossRefGoogle Scholar
- 3.Odobel F, Pellegrin Y, Gibson EA, Hagfeldt A, Smeigh AL, Hammarström L (2012) Coord Chem Rev 256:2414CrossRefGoogle Scholar
- 4.Odobel F, Le Pleux L, Pellegrin Y, Blart E (2010) Acc Chem Res 1063:43Google Scholar
- 5.Boschloo G, Hagfeldt A (2001) J Phys Chem B 105:3039CrossRefGoogle Scholar
- 6.Qin P, Zhu H, Edvinsson T, Boschloo G, Hagfeldt A, Sun L (2008) J Am Chem Soc 130:8570CrossRefGoogle Scholar
- 7.Li L, Duan L, Wen F, Li C, Wang M, Hagfeldt A, Sun L (2012) Chem Commun 48:988CrossRefGoogle Scholar
- 8.Wilker MB, Shinopoulos KE, Brown KA, Mulder DW, King PW, Dukovic G (2014) J Am Chem Soc 136:4316CrossRefGoogle Scholar
- 9.Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Chem Soc Rev 38:89CrossRefGoogle Scholar
- 10.Qin P, Wiberg J, Gibson EA, Linder M, Li L, Brinck T, Hagfeldt A, Albinsson B, Sun L (2010) J Phys Chem C 114:4738CrossRefGoogle Scholar
- 11.He J, Lindström H, Hagfeldt A, Lindquist S-E (2000) Sol Energy Mater Sol Cells 62:265CrossRefGoogle Scholar
- 12.Mahmood T, Saddique MT, Naeem A, Westerhoff P, Mustafa S, Alum A (2011) Ind Eng Chem Res 50:10017CrossRefGoogle Scholar
- 13.Hexter SV, Grey F, Happe T, Climent V, Armstrong FA (2012) Proc Natl Acad Sci U S A 109:11516CrossRefGoogle Scholar
- 14.Murphy BJ, Sargent F, Armstrong FA (2014) Energy Environ Sci 7:1426CrossRefGoogle Scholar
- 15.Bachmeier A, Wang VC-C, Woolerton TW, Bell S, Fontecilla-Camps JC, Can M, Ragsdale SW, Chaudhary YS, Armstrong FA (2013) J Am Chem Soc 135:15026CrossRefGoogle Scholar
- 16.Hexter SV, Esterle TF, Armstrong FA (2014) Phys Chem Chem Phys 16:11822CrossRefGoogle Scholar
- 17.Wang VC-C, Can M, Pierce E, Ragsdale SW, Armstrong FA (2013) J Am Chem Soc 135:2198CrossRefGoogle Scholar
- 18.Bard AJ, Faulkner LR (2001) Electrochemical Methods: Fundamentals and Applications, 2nd edn. John Wiley & Sons Inc, New YorkGoogle Scholar
- 19.Renaud A, Chavillon B, Cario L, Pleux LL, Szuwarski N, Pellegrin Y, Blart E, Gautron E, Odobel F, Jobic S (2013) J Phys Chem C 117:22478CrossRefGoogle Scholar
- 20.Gonzalez-Elipe AR, Holgado JP, Alvarez R, Munuera G (1992) J Phys Chem 96:3080CrossRefGoogle Scholar
- 21.Zhu H, Hagfeldt A, Boschloo G (2007) J Phys Chem C 111:17455CrossRefGoogle Scholar
- 22.Powar S, Wu Q, Weidelener M, Nattestad A, Hu Z, Mishra A, Bauerle P, Spiccia L, Cheng Y-B, Bach U (2012) Energy Environ Sci 5:8896CrossRefGoogle Scholar
- 23.Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) J Am Chem Soc 132:2132CrossRefGoogle Scholar
- 24.Woolerton TW, Sheard S, Pierce E, Ragsdale SW, Armstrong FA (2011) Energy Environ Sci 4:2393CrossRefGoogle Scholar
- 25.Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E, Ragsdale SW, Armstrong FA (2012) Chem Commun 48:58CrossRefGoogle Scholar
- 26.Kuciauskas D, Freund MS, Gray HB, Winkler JR, Lewis NS (2001) J Phys Chem B 105:392CrossRefGoogle Scholar
- 27.Smeigh AL, Pleux LL, Fortage J, Pellegrin Y, Blart E, Odobel F, Hammarstrom L (2012) Chem Commun 48:678CrossRefGoogle Scholar
- 28.Gardner JM, Beyler M, Karnahl M, Tschierlei S, Ott S, Hammarström L (2012) J Am Chem Soc 134:19322CrossRefGoogle Scholar
- 29.Tong L, Iwase A, Nattestad A, Bach U, Weidelener M, Gotz G, Mishra A, Bauerle P, Amal R, Wallace GG, Mozer AJ (2012) Energy Environ Sci 5:9472CrossRefGoogle Scholar
- 30.Ye H, Park HS, Bard AJ (2011) J Phys Chem C 115:12464CrossRefGoogle Scholar
- 31.Youngblood WJ, Lee S-HA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE (2009) J Am Chem Soc 131:926CrossRefGoogle Scholar
- 32.Morris CJ, Black AC, Pealing SL, Manson FD, Chapman SK, Reid GA, Gibson DM, Ward FB (1994) Biochem J 302:587CrossRefGoogle Scholar
Copyright information
© Springer International Publishing AG 2017