Advertisement

Selective Visible-Light-Driven CO2 Reduction on a p-Type Dye-Sensitised NiO Photocathode

  • Andreas S. J. L. BachmeierEmail author
Chapter
  • 384 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Building on the principles of protein film electrochemistry on semiconductor electrodes established in Chap.  4, a photocathode assembly for the visible-light-driven, selective reduction of CO2 to CO at potentials below the thermodynamic equilibrium in the dark is presented in this chapter. The photoelectrode comprises a porous p-type semiconducting NiO electrode modified with the visible-light responsive organic dye P1 and CODH as reversible CO2 cycling enzyme. The direct electrochemistry of the enzymatic electrocatalyst on NiO shows that in the dark the electrocatalytic behaviour is rectified towards CO oxidation, with the reactivity being governed by the carrier availability on the semiconductor/catalyst interface.

Keywords

Hole Injection Semiconductor Electrode Artificial Photosynthesis Geminate Recombination Photocurrent Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bachmeier A, Hall S, Ragsdale SW, Armstrong FA (2014) J Am Chem Soc 136:13518Google Scholar
  2. 2.
    Odobel F, Pellegrin Y (2013) J Phys Chem Lett 4:2551CrossRefGoogle Scholar
  3. 3.
    Odobel F, Pellegrin Y, Gibson EA, Hagfeldt A, Smeigh AL, Hammarström L (2012) Coord Chem Rev 256:2414CrossRefGoogle Scholar
  4. 4.
    Odobel F, Le Pleux L, Pellegrin Y, Blart E (2010) Acc Chem Res 1063:43Google Scholar
  5. 5.
    Boschloo G, Hagfeldt A (2001) J Phys Chem B 105:3039CrossRefGoogle Scholar
  6. 6.
    Qin P, Zhu H, Edvinsson T, Boschloo G, Hagfeldt A, Sun L (2008) J Am Chem Soc 130:8570CrossRefGoogle Scholar
  7. 7.
    Li L, Duan L, Wen F, Li C, Wang M, Hagfeldt A, Sun L (2012) Chem Commun 48:988CrossRefGoogle Scholar
  8. 8.
    Wilker MB, Shinopoulos KE, Brown KA, Mulder DW, King PW, Dukovic G (2014) J Am Chem Soc 136:4316CrossRefGoogle Scholar
  9. 9.
    Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Chem Soc Rev 38:89CrossRefGoogle Scholar
  10. 10.
    Qin P, Wiberg J, Gibson EA, Linder M, Li L, Brinck T, Hagfeldt A, Albinsson B, Sun L (2010) J Phys Chem C 114:4738CrossRefGoogle Scholar
  11. 11.
    He J, Lindström H, Hagfeldt A, Lindquist S-E (2000) Sol Energy Mater Sol Cells 62:265CrossRefGoogle Scholar
  12. 12.
    Mahmood T, Saddique MT, Naeem A, Westerhoff P, Mustafa S, Alum A (2011) Ind Eng Chem Res 50:10017CrossRefGoogle Scholar
  13. 13.
    Hexter SV, Grey F, Happe T, Climent V, Armstrong FA (2012) Proc Natl Acad Sci U S A 109:11516CrossRefGoogle Scholar
  14. 14.
    Murphy BJ, Sargent F, Armstrong FA (2014) Energy Environ Sci 7:1426CrossRefGoogle Scholar
  15. 15.
    Bachmeier A, Wang VC-C, Woolerton TW, Bell S, Fontecilla-Camps JC, Can M, Ragsdale SW, Chaudhary YS, Armstrong FA (2013) J Am Chem Soc 135:15026CrossRefGoogle Scholar
  16. 16.
    Hexter SV, Esterle TF, Armstrong FA (2014) Phys Chem Chem Phys 16:11822CrossRefGoogle Scholar
  17. 17.
    Wang VC-C, Can M, Pierce E, Ragsdale SW, Armstrong FA (2013) J Am Chem Soc 135:2198CrossRefGoogle Scholar
  18. 18.
    Bard AJ, Faulkner LR (2001) Electrochemical Methods: Fundamentals and Applications, 2nd edn. John Wiley & Sons Inc, New YorkGoogle Scholar
  19. 19.
    Renaud A, Chavillon B, Cario L, Pleux LL, Szuwarski N, Pellegrin Y, Blart E, Gautron E, Odobel F, Jobic S (2013) J Phys Chem C 117:22478CrossRefGoogle Scholar
  20. 20.
    Gonzalez-Elipe AR, Holgado JP, Alvarez R, Munuera G (1992) J Phys Chem 96:3080CrossRefGoogle Scholar
  21. 21.
    Zhu H, Hagfeldt A, Boschloo G (2007) J Phys Chem C 111:17455CrossRefGoogle Scholar
  22. 22.
    Powar S, Wu Q, Weidelener M, Nattestad A, Hu Z, Mishra A, Bauerle P, Spiccia L, Cheng Y-B, Bach U (2012) Energy Environ Sci 5:8896CrossRefGoogle Scholar
  23. 23.
    Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) J Am Chem Soc 132:2132CrossRefGoogle Scholar
  24. 24.
    Woolerton TW, Sheard S, Pierce E, Ragsdale SW, Armstrong FA (2011) Energy Environ Sci 4:2393CrossRefGoogle Scholar
  25. 25.
    Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E, Ragsdale SW, Armstrong FA (2012) Chem Commun 48:58CrossRefGoogle Scholar
  26. 26.
    Kuciauskas D, Freund MS, Gray HB, Winkler JR, Lewis NS (2001) J Phys Chem B 105:392CrossRefGoogle Scholar
  27. 27.
    Smeigh AL, Pleux LL, Fortage J, Pellegrin Y, Blart E, Odobel F, Hammarstrom L (2012) Chem Commun 48:678CrossRefGoogle Scholar
  28. 28.
    Gardner JM, Beyler M, Karnahl M, Tschierlei S, Ott S, Hammarström L (2012) J Am Chem Soc 134:19322CrossRefGoogle Scholar
  29. 29.
    Tong L, Iwase A, Nattestad A, Bach U, Weidelener M, Gotz G, Mishra A, Bauerle P, Amal R, Wallace GG, Mozer AJ (2012) Energy Environ Sci 5:9472CrossRefGoogle Scholar
  30. 30.
    Ye H, Park HS, Bard AJ (2011) J Phys Chem C 115:12464CrossRefGoogle Scholar
  31. 31.
    Youngblood WJ, Lee S-HA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE (2009) J Am Chem Soc 131:926CrossRefGoogle Scholar
  32. 32.
    Morris CJ, Black AC, Pealing SL, Manson FD, Chapman SK, Reid GA, Gibson DM, Ward FB (1994) Biochem J 302:587CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Business Unit CatalystsClariantMunichGermany

Personalised recommendations