Skip to main content

The Direct Electrochemistry of Fuel-Forming Enzymes on Semiconducting Electrodes: How Light-Harvesting Semiconductors Can Alter the Bias of Reversible Electrocatalysts in Favour of H2 Production and CO2 Reduction

  • Chapter
  • First Online:
Book cover Metalloenzymes as Inspirational Electrocatalysts for Artificial Photosynthesis

Part of the book series: Springer Theses ((Springer Theses))

  • 434 Accesses

Abstract

This chapter describes the direct electrochemistry of the fuel-forming enzymes [NiFeSe]-hydrogenase (Sect. 1.6.3) and carbon monoxide dehydrogenase (CODH, Sect. 1.6.4) immobilised on porous n-type semiconductor electrode materials. Being reversible electrocatalysts for CO2/CO and H+/H2 interconversion, these enzymes show high activities for both oxidation and reduction when attached to metallic-like graphite electrodes (PGE). Yet, whereas the most efficient catalysts for the formation of solar fuels should, in addition to operating close to reversible potentials, possess a catalytic bias for the fuel-forming direction, both [NiFeSe]-hydrogenase and CODH possess an inherent catalytic bias that favours the oxidation over the reduction half-reaction. When [NiFeSe]-hydrogenase and CODH are adsorbed on n-type semiconductor electrodes constructed from CdS and TiO2 nanoparticles, a marked shift in bias is observed, now favouring CO2 or H+ reduction. The fuel-forming reaction is efficiently catalysed at minimal overpotentials (both in the dark and under illumination), while the, in this case destructive oxidation reaction is greatly suppressed. This chapter describes how the electronic state of the electrode can strongly bias the direction of electrocatalysis of both CO2 and H2 cycling. Electrical impedance spectroscopy (EIS) experiments shed light on the binding mode of these enzymes on porous surfaces and indicate possible rate-limiting parameters in photocatalytic CO2 or H+ reduction by metalloenzymes adsorbed on semiconductor nanoparticles.

Part of the work presented in this chapter has been published: Andreas Bachmeier, Vincent C.-C. Wang, Thomas W. Woolerton, Sophie Bell, Juan C. Fontecilla-Camps, Mehmet Can, Stephen W. Ragsdale, Yatendra S. Chaudhary, and Fraser A. Armstrong, J. Am. Chem. Soc. 2013, 135, 15026.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This approach is entirely impractical in PFE experiments with hydrogenase or CODH enzymes due to the low yields of the enzyme preparations, where typically only μL of enzyme are obtained from 10+ L batches.

References

  1. Soo HS, Agiral A, Bachmeier A, Frei H (2012) J Am Chem Soc 134:17104

    Article  CAS  Google Scholar 

  2. Bott A (1998) Curr Sep 3:87

    Google Scholar 

  3. Gelderman K, Lee L, Donne SW (2007) J Chem Educ 84:685

    Article  CAS  Google Scholar 

  4. Topoglidis E, Campbell C, Cass AG, Durrant JR (2001) Langmuir 17:7899

    Article  CAS  Google Scholar 

  5. Topoglidis E, Lutz T, Durrant JR, Palomares E (2008) Bioelectrochemistry 74:142

    Article  CAS  Google Scholar 

  6. Jones AK, Sillery E, Albracht SPJ, Armstrong FA (2002) Chem Commun 866

    Google Scholar 

  7. Parkin A, Goldet G, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2008) J Am Chem Soc 130:13410

    Article  CAS  Google Scholar 

  8. Armstrong FA, Hirst J (2011) Proc Natl Acad Sci U S A 108:14049

    Article  CAS  Google Scholar 

  9. Frey M (2002) ChemBioChem 3:153

    Article  CAS  Google Scholar 

  10. Parkin A, Seravalli J, Vincent KA, Ragsdale SW, Armstrong FA (2007) J Am Chem Soc 129:10328

    Article  CAS  Google Scholar 

  11. Grätzel M (2001) Nature 414:338

    Article  Google Scholar 

  12. Reisner E, Fontecilla-Camps JC, Armstrong FA (2009) Chem Commun 550

    Google Scholar 

  13. Reisner E, Powell DJ, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) J Am Chem Soc 131:18457

    Article  CAS  Google Scholar 

  14. Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) J Am Chem Soc 132:2132

    Article  CAS  Google Scholar 

  15. Woolerton TW, Sheard S, Pierce E, Ragsdale SW, Armstrong FA (2011) Energy Environ Sci 4:2393

    Article  CAS  Google Scholar 

  16. Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E, Ragsdale SW, Armstrong FA (2012) Chem Commun 48:58

    Article  CAS  Google Scholar 

  17. Armstrong FA, Heering HA, Hirst J (1997) Chem Soc Rev 26:169

    Article  CAS  Google Scholar 

  18. Armstrong FA (1990) In: Bioinorganic Chemistry, vol 72. Springer, Berlin, p 137

    Book  Google Scholar 

  19. Morra S, Valetti F, Sadeghi SJ, King PW, Meyer T, Gilardi G (2011) Chem Commun 47:10566

    Article  CAS  Google Scholar 

  20. Woolerton TW (2012) D Phil Thesis. University of Oxford, Oxford

    Google Scholar 

  21. Bacsa RR, Kiwi J (1998) Appl Catal B 16:19

    Article  CAS  Google Scholar 

  22. Svetlitchnyi V, Peschel C, Acker G, Meyer O (2001) J Bacteriol 183:5134

    Article  CAS  Google Scholar 

  23. Park SW, Huang CP (1987) J Colloid Interf Sci 117:431

    Article  CAS  Google Scholar 

  24. Wang VC-C, Ragsdale SW, Armstrong FA (2013) ChemBioChem 1845:14

    Google Scholar 

  25. Wang VC-C, Can M, Pierce E, Ragsdale SW, Armstrong FA (2013) J Am Chem Soc 135:2198

    Article  CAS  Google Scholar 

  26. Hexter SV, Grey F, Happe T, Climent V, Armstrong FA (2012) Proc Natl Acad Sci U S A 109:11516

    Article  CAS  Google Scholar 

  27. Murphy BJ, Sargent F, Armstrong FA (2014) Energy Environ Sci 7:1426

    Article  CAS  Google Scholar 

  28. Hexter SV, Esterle TF, Armstrong FA (2014) Phys Chem Chem Phys 16:11822

    Article  CAS  Google Scholar 

  29. Kavan L, Grätzel M, Rathouský J, Zukalb A (1996) J Electrochem Soc 143:394

    Article  CAS  Google Scholar 

  30. Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Bisquert J (2003) J Phys Chem B 107:758

    Article  CAS  Google Scholar 

  31. Meissner D, Memming R, Kastening B (1988) J Phys Chem 92:3476

    Article  CAS  Google Scholar 

  32. Beranek R (2011) Adv Phys Chem 786759

    Google Scholar 

  33. Lee MS, Cheon IC, Kim YI (2003) Bull Korean Chem Soc 24:1155

    Article  CAS  Google Scholar 

  34. Boschloo G, Fitzmaurice D (2000) J Electrochem Soc 147:1117

    Article  CAS  Google Scholar 

  35. Bard AJ, Faulkner LR (2001) Electrochemical Methods: Fundamentals and Applications, 2nd edn. John Wiley & Sons Inc., New York

    Google Scholar 

  36. Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) J Am Chem Soc 118:6716

    Article  CAS  Google Scholar 

  37. Spadavecchia F, Cappelletti G, Ardizzone S, Ceotto M, Falciola L (2011) J Phys Chem C 115:6381

    Article  CAS  Google Scholar 

  38. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446

    Article  CAS  Google Scholar 

  39. Bachmeier A, Wang VC-C, Woolerton TW, Bell S, Fontecilla-Camps JC, Can M, Ragsdale SW, Chaudhary YS, Armstrong FA (2013) J Am Chem Soc 135:15026

    Google Scholar 

  40. Barbé CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Grätzel M (1997) J Am Ceram Soc 80:3157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas S. J. L. Bachmeier .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bachmeier, A.S.J.L. (2017). The Direct Electrochemistry of Fuel-Forming Enzymes on Semiconducting Electrodes: How Light-Harvesting Semiconductors Can Alter the Bias of Reversible Electrocatalysts in Favour of H2 Production and CO2 Reduction. In: Metalloenzymes as Inspirational Electrocatalysts for Artificial Photosynthesis . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-47069-6_4

Download citation

Publish with us

Policies and ethics