Advertisement

Theory of Experimental Techniques

  • Andreas S. J. L. BachmeierEmail author
Chapter
  • 352 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter reviews the theoretical principles underlying the experiential techniques utilised in thesis, in particular protein film and semiconductor electrochemistry. An introduction to electron transfer (‘Marcus’) theory is provided as well, including treatments of photoinduced electron transfer and electronic transfer in biological systems.

Keywords

Electron Transfer Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Depletion Layer Potential Energy Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chen Z, Dinh HN, Miller E (2013) Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Armstrong FA, Belsey NA, Cracknell JA, Goldet G, Parkin A, Reisner E, Vincent KA, Wait AF (2009) Chem Soc Rev 38:36CrossRefGoogle Scholar
  3. 3.
    Blanford CF (2013) Chem Commun 49:11130CrossRefGoogle Scholar
  4. 4.
    Vincent KA, Parkin A, Armstrong FA (2007) Chem Rev 107:4366CrossRefGoogle Scholar
  5. 5.
    Léger C (2013) In: Louro RRCO (ed) Practical Approaches to Biological Inorganic Chemistry. Elsevier, Oxford, p 179CrossRefGoogle Scholar
  6. 6.
    Bard AJ, Faulkner LR (2001) Electrochemical Methods: Fundamentals and Applications, 2nd edn. John Wiley & Sons Inc, New YorkGoogle Scholar
  7. 7.
    Fisher AC (1996) Electrode Dynamics. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Wedler G (2004) Lehrbuch der Physikalischen Chemie, 5th edn. Wiley-VCH, WeinheimGoogle Scholar
  9. 9.
    Atkins P, de Paula J (2010) Atkins’ Physical Chemistry, 9th edn. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Armstrong FA, Hirst J (2011) Proc Natl Acad Sci U S A 108:14049CrossRefGoogle Scholar
  11. 11.
    Léger C, Jones AK, Albracht SPJ, Armstrong FA (2002) J Phys Chem B 106:13058CrossRefGoogle Scholar
  12. 12.
    Ludwig M, Cracknell JA, Vincent KA, Armstrong FA, Lenz O (2009) J Biol Chem 284:465CrossRefGoogle Scholar
  13. 13.
    Brattain WH, Garrett CGB (1955) Bell Syst Tech J 34:129CrossRefGoogle Scholar
  14. 14.
    Bockris JOM, Khan SUM (1993) Surface Electrochemistry: A Molecular Level Approach. Plenum Press, New YorkCrossRefGoogle Scholar
  15. 15.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  16. 16.
    O’Regan B, Grätzel M (1991) Nature 353:737CrossRefGoogle Scholar
  17. 17.
    Khaselev O, Turner JA (1998) Science 280:425CrossRefGoogle Scholar
  18. 18.
    Bott A (1998) Curr Sep 3:87Google Scholar
  19. 19.
    Myamlin VA, Pleskov YV (1967) Electrochemistry of Semiconductors. Plenum Press, New YorkCrossRefGoogle Scholar
  20. 20.
    Rajeshwar K (2002) In: Licht S (ed) Semiconductor Electrodes and Photoelectrochemistry. Wiley-VCH, Weinheim, p 1Google Scholar
  21. 21.
    Finklea HO (1988) In: Finklea HO (ed) Semiconductor Electrodes. Elsevier Science Publishers, Amsterdam, p 1Google Scholar
  22. 22.
    Irebo T, Zhang M-T, Markle TF, Scott AM, Hammarström L (2012) J Am Chem Soc 134:16247Google Scholar
  23. 23.
    Tan MX, Laibinis PE, Nguyen ST, Kesselman JM, Stanton CE, Lewis NS (1994) In: Prog Inorg Chem. John Wiley & Sons, Inc., New York, p 21Google Scholar
  24. 24.
    Gelderman K, Lee L, Donne SW (2007) J Chem Educ 84:685CrossRefGoogle Scholar
  25. 25.
    Beranek R (2011) Adv Phys Chem 786759Google Scholar
  26. 26.
    Berger T, Anta JA, Morales-Flórez V (2012) J Phys Chem C 116:11444CrossRefGoogle Scholar
  27. 27.
    Kavan L, Kratochvilová K, Grätzel M (1995) J Electroanal Chem 394:93CrossRefGoogle Scholar
  28. 28.
    Wang H, He J, Boschloo G, Lindström H, Hagfeldt A, Lindquist S-E (2001) J Phys Chem B 105:2529CrossRefGoogle Scholar
  29. 29.
    Zhang Q, Celorrio V, Bradley K, Eisner F, Cherns D, Yan W, Fermín DJ (2014) J Phys Chem C 118:18207CrossRefGoogle Scholar
  30. 30.
    Boschloo G, Fitzmaurice D (1999) J Phys Chem B 103:2228CrossRefGoogle Scholar
  31. 31.
    He J, Lindström H, Hagfeldt A, Lindquist S-E (2000) Sol Energy Mater Sol Cells 62:265CrossRefGoogle Scholar
  32. 32.
    Odobel F, Pellegrin Y, Gibson EA, Hagfeldt A, Smeigh AL, Hammarström L (2012) Coord Chem Rev 256:2414CrossRefGoogle Scholar
  33. 33.
    Zhu H, Hagfeldt A, Boschloo G (2007) J Phys Chem C 111:17455CrossRefGoogle Scholar
  34. 34.
    Gärtner WW (1959) Phys Rev 116:84CrossRefGoogle Scholar
  35. 35.
    Sprunken HR, Schumacher R, Schindler RN (1980) Farad Discuss 70:55CrossRefGoogle Scholar
  36. 36.
    Randles JEB (1947) Farad Discuss 1:11CrossRefGoogle Scholar
  37. 37.
    Brett CMA, Oliveira Brett AM (1993) Electrochemistry: Principles, Methods, and Applications. Oxford University Press, OxfordGoogle Scholar
  38. 38.
    Marcus RA (1993) Angew Chem Int Ed 32:1111CrossRefGoogle Scholar
  39. 39.
    Levich V, Dogonadze R (1959) Dokl Akad Nauk SSSR 124:123Google Scholar
  40. 40.
    Hush NS (1968) Electrochim Acta 13:1005Google Scholar
  41. 41.
    Marcus RA, Sutin N (1985) BBA-Bioenergetics 811:265Google Scholar
  42. 42.
    Sutin N, Creutz C (1983) J Chem Educ 60:809CrossRefGoogle Scholar
  43. 43.
    Sutin N (1982) Acc Chem Res 15:275CrossRefGoogle Scholar
  44. 44.
    Kavarnos GJ (1993) Fundamentals of Photoinduced Electron Transfer. Wiley-VCH, WeinheimGoogle Scholar
  45. 45.
    Marcus RA (1956) J Phys Chem 24:966CrossRefGoogle Scholar
  46. 46.
    Marcus RA (1960) Farad Discuss 29:21CrossRefGoogle Scholar
  47. 47.
    Marcus RA (1963) J Phys Chem 67:853CrossRefGoogle Scholar
  48. 48.
    Marcus RA (1965) J Phys Chem 43:679CrossRefGoogle Scholar
  49. 49.
    Murov SL, Carmichael I, Hug GL (1993) Handbook of Photochemistry, 2nd edn. Marcel Dekker Inc, New YorkGoogle Scholar
  50. 50.
    Léger C, Bertrand P (2008) Chem Rev 108:2379CrossRefGoogle Scholar
  51. 51.
    Compton RG, Banks CE (2011) Understanding Voltammetry, 2nd edn. Imperial College Press, LondonCrossRefGoogle Scholar
  52. 52.
    Miller JR, Calcaterra LT, Closs GL (1984) J Am Chem Soc 106:3047CrossRefGoogle Scholar
  53. 53.
    Atkins PW, de Paula J, Friedman R (2014) Physical Chemistry: Quanta, Matter, and Change, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  54. 54.
    Page CC, Moser CC, Chen X, Dutton PL (1999) Nature 402:47CrossRefGoogle Scholar
  55. 55.
    Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature 355:796CrossRefGoogle Scholar
  56. 56.
    Gray HB, Winkler JR (2005) Proc Natl Acad Sci U S A 102:3534CrossRefGoogle Scholar
  57. 57.
    Oevering H, Paddon-Row MN, Heppener M, Oliver AM, Cotsaris E, Verhoeven JW, Hush NS (1987) J Am Chem Soc 109:3258CrossRefGoogle Scholar
  58. 58.
    Johnson MD, Miller JR, Green NS, Closs GL (1989) J Phys Chem 93:1173CrossRefGoogle Scholar
  59. 59.
    Winkler JR, Gray HB (1992) Chem Rev 92:369CrossRefGoogle Scholar
  60. 60.
    Gray HB, Winkler JR (2009) Chem Phys Lett 483:1CrossRefGoogle Scholar
  61. 61.
    Davis WB, Svec WA, Ratner MA, Wasielewski MR (1998) Nature 396:60CrossRefGoogle Scholar
  62. 62.
    Wielopolski M (2010) Testing molecular wires: A photophysical and Quantum Chemical Assay. Springer, BerlinCrossRefGoogle Scholar
  63. 63.
    Shih C, Museth AK, Abrahamsson M, Blanco-Rodriguez AM, Di Bilio AJ, Sudhamsu J, Crane BR, Ronayne KL, Towrie M, Vlček A, Richards JH, Winkler JR, Gray HB (2008) Science 320:1760CrossRefGoogle Scholar
  64. 64.
    Winkler JR, Gray HB (2014) J Am Chem Soc 136:2930CrossRefGoogle Scholar
  65. 65.
    Winkler JR, Gray HB (2014) Chem Rev 114:3369CrossRefGoogle Scholar
  66. 66.
    Sazanov LA, Hinchliffe P (2006) Science 311:1430CrossRefGoogle Scholar
  67. 67.
    Hagen WR (2006) Dalton Trans 4415Google Scholar
  68. 68.
    Drago RS (1992) Physical Methods for Chemists, 2nd edn. Surfside Scientific Publishers, GainesvilleGoogle Scholar
  69. 69.
    Hexter SV (2014) D Phil Thesis, University of Oxford, OxfordGoogle Scholar
  70. 70.
    Hagen WR (2008) Biomolecular EPR Spectroscopy. CRC Press, Boca RatonCrossRefGoogle Scholar
  71. 71.
    Chasteen ND, Snetsinger PA (2000) In: Que L (ed) Physical Methods in Bioinorganic Chemistry: Spectroscopy and Magnetism. University Science Books, Sausalito, p 187Google Scholar
  72. 72.
    Roessler MM (2012) D Phil Thesis, University of Oxford, OxfordGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Business Unit CatalystsClariantMunichGermany

Personalised recommendations