Skip to main content

Vorticity, Variance, and the Vigor of Many-Body Phenomena in Ultracold Quantum Systems: MCTDHB and MCTDH-X

  • Conference paper
  • First Online:

Abstract

During the past year of the MCTDHB project at the HLRS, we continued to strive and conquest further applications, developments, and expansion of the MultiConfigurational Time-Dependent Hartree for Bosons (MCTDHB) method in the context of ultracold atomic systems. We also announce the MCTDH-X package, the Multiconfigurational Time-Dependent Hartree for Indistinguishable Particles X package, which is able to treat identical bosons and fermions, with or without spin/internal degrees of freedom, alike. Here we report on a plethora of results and versatile applications which include: (i) single-shot imaging of fluctuating vortices in a fragmented Bose-Einstein condensate (BEC); (ii) the many-body tunneling and fragmetnation of vortices in 2D trapped BECs; (iii) the transition from vortices to solitonic vortices in 2D trapped BECs; (iv) the variance of a many-particle system being very sensitive to correlations even in the infinite-particle limit; (v) the consequences of the latter on the out-of-equilibrium uncertainty product of an evolving BEC; (vi) the mechanism of tunneling to open space of a few interacting polarized fermions; and (vii) composite fragmentation of multi-components BECs (i.e., with internal degrees of freedom). These are all exciting results made throughout the allocation of computer time by the HLRS to the MCTDHB project. Finally, further perspectives and future research plans are briefly discussed.

This is a preview of subscription content, log in via an institution.

References

  1. Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: General variational many-body theory with complete self-consistency for trapped bosonic systems. Phys. Rev. A 73, 063626 (2006)

    Google Scholar 

  2. Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: Role of excited states in the splitting of a trapped interacting bose-einstein condensate by a time-dependent barrier. Phys. Rev. Lett. 99, 030402 (2007)

    Google Scholar 

  3. Alon, O.E., Streltsov, A.I., Cederbaum, L.S.: Unified view on multiconfigurational time propagation for systems consisting of identical particles. J. Chem. Phys. 127, 154103 (2007)

    Google Scholar 

  4. Alon, O.E., Streltsov, A.I., Cederbaum, L.S.: Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems. Phys. Rev. A 77, 033613 (2008)

    Google Scholar 

  5. Sakmann, K., Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: Exact quantum dynamics of a bosonic Josephson junction. Phys. Rev. Lett. 103, 220601 (2009)

    Google Scholar 

  6. Lode, A.U.J., Sakmann, K., Alon, O.E., Cederbaum, L.S., Streltsov, A.I.: Numerically exact quantum dynamics of bosons with time-dependent interactions of harmonic type. Phys. Rev. A 86, 063606 (2012)

    Google Scholar 

  7. Meyer, H.-D., Gatti, F., Worth, G. A. (eds.): Multidimensional Quantum Dynamics: MCTDH Theory and Applications. Wiley-VCH, Weinheim (2009)

    Google Scholar 

  8. Proukakis, N.P., Gardiner, S.A., Davis, M.J., Szymanska, M.H. (eds.): Quantum Gases: Finite Temperature and Non-equilibrium Dynamics. Cold Atoms Series, vol. 1. Imperial College Press, London (2013)

    Google Scholar 

  9. Streltsov, A.I., Sakmann, K., Lode, A.U.J., Alon, O.E., Cederbaum, L.S.: The Multiconfigurational Time-Dependent Hartree for Bosons Package, version 2.3. Heidelberg (2013)

    Google Scholar 

  10. Streltsov, A.I., Cederbaum, L.S., Alon, O.E., Sakmann, K., Lode, A.U.J., Grond, J., Streltsova, O.I., Klaiman, S.: The Multiconfigurational Time-Dependent Hartree for Bosons Package, version 3.x. Heidelberg (2006-Present). http://mctdhb.org

  11. Streltsov, A.I., Streltsova, O.I.: The Multiconfigurational Time-Dependent Hartree for Bosons Laboratory, version 1.5 (2015) http://MCTDHB-lab.org; http://QDlab.org

  12. Lode, A.U.J., Tsatsos, M.C., Fasshauer, E.: The Multiconfigurational Time-Dependent Hartree for Indistinguishable Particles X Package (2015) http://mctdhx.org; http://ultracold.org; http://schroedinger.org; http://mctdh.bf

  13. Lode, A.U.J., Sakmann, K., Doganov, R.A., Grond, J., Alon, O.E., Streltsov, A.I., Cederbaum, L.S.: Numerically-exact schrödinger dynamics of closed and open many-boson systems with the MCTDHB package. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance Computing in Science and Engineering ’13: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2013, pp. 81–92. Springer, Heidelberg (2013)

    Google Scholar 

  14. Klaiman, S., Lode, A.U.J., Sakmann, K., Streltsova, O.I., Alon, O.E., Cederbaum, L.S., Streltsov, A.I.: Quantum many-body dynamics of trapped bosons with the MCTDHB package: towards new horizons with novel physics. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance Computing in Science and Engineering ’14: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2014, pp. 63–86. Springer, Heidelberg (2015)

    Google Scholar 

  15. Alon, O.E., Bagnato, V.S., Beinke, R., Brouzos, I., Calarco, T., Caneva, T., Cederbaum, L.S., Kasevich, M.A., Klaiman, S., Lode, A.U.J., Montangero, S., Negretti, A., Said, R.S., Sakmann, K., Streltsova, O.I., Theisen, M., Tsatsos, M.C., Weiner, S.E., Wells, T., Streltsov, A.I.: MCTDHB physics and technologies: excitations and vorticity, single-shot detection,measurement of fragmentation, and optimal control in correlated ultra-cold bosonic many-body systems. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance Computing in Science and Engineering ’15: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2015, pp. 23–50. Springer, Heidelberg (2016)

    Google Scholar 

  16. Sakmann, K., Kasevich, M.: Single-shot simulations of dynamic quantum many-body systems. Nat. Phys. 12, 451 (2016)

    Google Scholar 

  17. Beinke, R., Klaiman, S., Cederbaum, L.S., Streltsov, A.I., Alon, O.E.: Many-body tunneling dynamics of Bose-Einstein condensates and vortex states in two spatial dimensions. Phys. Rev. A 92, 043627 (2015)

    Google Scholar 

  18. Tsatsos, M.C., Edmonds, M.J., Parker, N.G.: Transition from vortices to solitonic vortices in trapped atomic Bose-Einstein condensates. Phys. Rev. A 94, 023627 (2016)

    Google Scholar 

  19. Klaiman, S., Alon, O.E.: Variance as a sensitive probe of correlations. Phys. Rev. A 91, 063613 (2015)

    Google Scholar 

  20. Klaiman, S., Streltsov, A.I., Alon, O.E.: Uncertainty product of an out-of-equilibrium many-particle system. Phys. Rev. A 93, 023605 (2016)

    Google Scholar 

  21. Fasshauer, E., Lode, A.U.J.: Multiconfigurational time-dependent Hartree method for fermions: implementation, exactness, and few-fermion tunneling to open space. Phys. Rev. A 93, 033635 (2016)

    Google Scholar 

  22. Lode, A.U.J.: The multiconfigurational time-dependent Hartree method for bosons with internal degrees of freedom: theory and composite fragmentation of multi-component Bose-Einstein condensates. Phys. Rev. A 93, 063601 (2016)

    Google Scholar 

  23. Penrose, O., Onsager, L.: Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 576 (1956)

    MATH  Google Scholar 

  24. Javanainen, J., Yoo, S.M.: Quantum phase of a Bose-Einstein condensate with an arbitrary number of atoms. Phys. Rev. Lett. 76, 161 (1996)

    Google Scholar 

  25. Castin, Y., Dalibard, J.: Relative phase of two Bose-Einstein condensates. Phys. Rev. A 55, 4330 (1997)

    Google Scholar 

  26. Dziarmaga, J., Karkuszewski, Z.P., Sacha, K.: Images of the dark soliton in a depleted condensate. J. Phys. B 36, 1217 (2003)

    Google Scholar 

  27. Dagnino, D., Barberán, N., Lewenstein, M.: Vortex nucleation in a mesoscopic Bose superfluid and breaking of the parity symmetry. Phys. Rev. A 80, 053611 (2009)

    Google Scholar 

  28. Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: General mapping for bosonic and fermionic operators in fock space. Phys. Rev. A 81, 022124 (2010)

    Google Scholar 

  29. Fetter, A.L.: Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys. 81, 647 (2009)

    Google Scholar 

  30. Dagnino, D., Barberán, N., Lewenstein, M., Dalibard, J.: Vortex nucleation as a case study of symmetry breaking in quantum systems. Nat. Phys. 5, 431 (2009)

    Google Scholar 

  31. Weiner, S.E., Tsatsos, M.C., Cederbaum, L.S., Lode, A.U.J.: Angular momentum in interacting many-body systems hides in phantom vortices. arXiv:1409.7670

    Google Scholar 

  32. Nozières, P., James, D.S.: Particle vs. pair condensation in attractive Bose liquids. J. Phys. (Fr.) 43, 1133 (1982)

    Google Scholar 

  33. Martin, A.M., Scott, R.G., Fromhold, T.M.: Transmission and reflection of Bose-Einstein condensates incident on a Gaussian tunnel barrier. Phys. Rev. A 75, 065602 (2007)

    Google Scholar 

  34. Arovas, D.P., Auerbach, A.: Quantum tunneling of vortices in two-dimensional superfluids. Phys. Rev. B 78, 094508 (2008)

    Google Scholar 

  35. Salgueiro, J.R., Zacarés, M., Michinel, H., Ferrando, A.: Vortex replication in Bose-Einstein condensates trapped in double-well potentials. Phys. Rev. A 79, 033625 (2009)

    Google Scholar 

  36. Fialko, O., Bradley, A.S., Brand, J.: Quantum tunneling of a vortex between two pinning potentials. Phys. Rev. Lett. 108, 015301 (2012)

    Google Scholar 

  37. Garcia-March, M.A., Carr, L.D.: Vortex macroscopic superpositions in ultracold bosons in a double-well potential. Phys. Rev. A 91, 033626 (2015)

    Google Scholar 

  38. Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R. (eds.): Emergent Nonlinear Phenomena in Bose-Einstein Condensates. Springer, Berlin (2008)

    MATH  Google Scholar 

  39. Becker, C., Sengstock, K., Schmelcher, P., Kevrekidis, P.G., Carretero-González, R.: Inelastic collisions of solitary waves in anisotropic Bose-Einstein condensates: sling-shot events and expanding collision bubbles. New J. Phys. 15, 113028 (2013)

    Google Scholar 

  40. Donadello, S., Serafini, S., Tylutki, M., Pitaevskii, L.P., Dalfovo, F., Lamporesi, G., Ferrari, G.: Observation of solitonic vortices in Bose-Einstein condensates. Phys. Rev. Lett. 113, 065302 (2014)

    Google Scholar 

  41. Ku, M.J.H., Ji, W., Mukherjee, B., Guardado-Sanchez, E., Cheuk, L.W., Yefsah, T., Zwierlein, M.W.: Motion of a solitonic vortex in the BEC-BCS crossover. Phys. Rev. Lett. 113, 065301 (2014)

    Google Scholar 

  42. Brand, J., Reinhardt, W.P.: Solitonic vortices and the fundamental modes of the snake instability: possibility of observation in the gaseous Bose-Einstein condensate. Phys. Rev. A 65, 043612 (2002)

    Google Scholar 

  43. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vol. 1. Wiley, New York (1977)

    MATH  Google Scholar 

  44. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Google Scholar 

  45. Leggett, A.J.: Bose-Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys. 73, 307 (2001)

    Google Scholar 

  46. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Google Scholar 

  47. Pitaevskii, L., Stringari, S.: Bose-Einstein Condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  48. Leggett, A.J.: Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed Matter Systems. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  49. Pethick, C.J., Smith, H.: Bose-Einstein Condensation in Dilute Gases, 2nd edn. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  50. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Google Scholar 

  51. Lieb, E.H., Seiringer, R.: Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)

    Google Scholar 

  52. Erdős, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross-Pitaevskii equation. Phys. Rev. Lett. 98, 040404 (2007)

    Google Scholar 

  53. Brazhnyi, V.A., Kamchatnov, A.M., Konotop, V.V.: Hydrodynamic flow of expanding Bose-Einstein condensates. Phys. Rev. A 68, 035603 (2003)

    Google Scholar 

  54. Serwane, F., Zürn, G., Lompe, T., Ottenstein, T.B., Wenz, A.N., Jochim, S.: Deterministic preparation of a tunable few-fermion system. Science 332, 6027 (2011)

    Google Scholar 

  55. Caillat, J., Zanghellini, J., Kitzler, M., Koch, O., Kreuzer, W., Scrinzi, A.: Correlated multielectron systems in strong laser fields: a multiconfiguration time-dependent Hartree-Fock approach. Phys. Rev. A 71, 012712 (2005); Zanghellini, J., Kitzler, M., Fabian, C., Brabec, T., Scrinzi, A.: An MCTDHF approach to multielectron dynamics in laser fields. Laser Phys. 13, 1064 (2003)

    Google Scholar 

  56. Kato, T., Kono, H.: Time-dependent multiconfiguration theory for electronic dynamics of molecules in an intense laser field. Chem. Phys. Lett. 392, 533 (2004)

    Google Scholar 

  57. Nest, M., Klamroth, T., Saalfrank, P.: The multiconfiguration time-dependent Hartree-Fock method for quantum chemical calculations. J. Chem. Phys. 122, 124102 (2005)

    Google Scholar 

  58. Grond, J., Streltsov, A.I., Lode, A.U.J., Sakmann, K., Cederbaum, L.S., Alon, O.E.: Excitation spectra of many-body systems by linear response: general theory and applications to trapped condensates. Phys. Rev. A 88, 023606 (2013)

    Google Scholar 

  59. Alon, O.E., Streltsov, A.I., Cederbaum, L.S.: Unified view on linear response of interacting identical and distinguishableparticles from multiconfigurational time-dependent Hartree methods. J. Chem. Phys. 140, 034108 (2014)

    Google Scholar 

  60. Alon, O.E.: Many-body excitation spectra of trapped bosons with general interaction by linear response. J. Phys. Conf. Ser. 594, 012039 (2015)

    Google Scholar 

  61. Tsatsos, M.C., Tavares, P.E.S., Cidrim, A., Fritsch, A.R., Caracanhas, M.A., dos Santos, F.E.A., Barenghi, C.F., Bagnato, V.S.: Quantum turbulence in trapped atomic Bose-Einstein condensates. Phys. Rep. 622, 1 (2016)

    MathSciNet  Google Scholar 

  62. Lode, A.U.J., Chakrabarti, B., Kota, V.K.B.: Many-body entropies, correlations, and emergence of statistical relaxation in interaction quench dynamics of ultracold bosons. Phys. Rev. A 92, 033622 (2015)

    Google Scholar 

  63. Gring, M., Kuhnert, M., Langen, T., Kitagawa, T., Rauer, B., Schreitl, M., Mazets, I., Adu Smith, D., Demler, E., Schmiedmayer, J.: Relaxation and prethermalization in an isolated quantum system. Science 337, 1318 (2012)

    Google Scholar 

  64. von Stecher, J., Greene, C.H.: Spectrum and dynamics of the BCS-BEC crossover from a few-body perspective. Phys. Rev. Lett. 99, 090402 (2007)

    Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. OEA acknowledges funding by the Israel Science Foundation (Grant No. 600/15). RB acknowledges support from the Heidelberg Graduate School of Fundamental Physics (HGSFP). MJE and NGP acknowledge support by EPSRC (UK) Grant No. EP/M005127/1. EF gratefully acknowledges funding from the Research Council of Norway (RCN) through CoE Grant No. 179568/V30 (CTCC). AUJL acknowledges financial support by the Swiss SNF and the NCCR Quantum Science and Technology. KS acknowledges support through the Karel Urbanek Postodcoral Research Fellowship from the Applied Physics Department of Stanford University. MCT acknowledges funding by FAPESP and CePOF at IFSC-University of São Paulo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexej I. Streltsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Alon, O.E. et al. (2016). Vorticity, Variance, and the Vigor of Many-Body Phenomena in Ultracold Quantum Systems: MCTDHB and MCTDH-X. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering ´16. Springer, Cham. https://doi.org/10.1007/978-3-319-47066-5_6

Download citation

Publish with us

Policies and ethics