Skip to main content

Large-Scale Phase-Field Simulations of Directional Solidified Ternary Eutectics Using High-Performance Computing

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ´16

Abstract

The combination of different chemical elements allows to obtain new and improved materials, as required for novel applications. Especially directionally solidified multicomponent eutectic alloys exhibit a wide range of patterns in the microstructure, which are correlated to the mechanical properties. The pattern formation during solidification depends on the chemical elements and the applied process parameters. Large-scale phase-field simulations are used to study the pattern formation of directional solidified ternary eutectics. Three different systems, starting from a model system towards the system Al-Ag-Cu are investigated, using three growth velocities. The three-dimensional simulation results are quantitatively compared and a broad variety of arising patterns for the studied systems is found. The results of the velocity variation follow the predictions from the analytic Jackson-Hunt approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The authors “J. Hötzer, M. Kellner and P. Steinmetz” contributed equally.

References

  1. Bai, L., Breen, D.: Calculating center of mass in an unbounded 2d environment. J. Gr. GPU Game Tools 13 (4), 53–60 (2008)

    Google Scholar 

  2. Bauer, M., Hötzer, J., Steinmetz, P., Jainta, M., Berghoff, M., Schornbaum, F., Godenschwager, C., Köstler, H., Nestler, B., Rüde, U.: Massively parallel phase-field simulations for ternary eutectic directional solidification (2015). arXiv preprint arXiv:1506.01684, accepted at SuperComputing 2015

    Google Scholar 

  3. Choudhury, A., Kellner, M., Nestler, B.: A method for coupling the phase-field model based on a grand-potential formalism to thermodynamic databases. Curr Opin Solid State Mater Sci 19 (0), 287–300 (2015)

    Article  Google Scholar 

  4. Choudhury, A., Nestler, B.: Grand-potential formulation for multicomponent phase transformations combined with thin-interface asymptotics of the double-obstacle potential. Phys. Rev. E 85:021602 (2012)

    Article  Google Scholar 

  5. Dennstedt, A., Choudhury, A., Ratke, L., Nestler, B.: Microstructures in a ternary eutectic alloy: devising metrics based on neighbourhood relationships. In: IOP Conference Series: Materials Science and Engineering, Kazan (2014)

    Google Scholar 

  6. Dennstedt, A., Helfen, L., Steinmetz, P., Nestler, B., Ratke, L.: 3D synchrotron imaging of a directionally solidified ternary eutectic. Metall. Mater. Trans. A 47, 981–984 (2015)

    Article  Google Scholar 

  7. Dennstedt, A., Ratke, L.: Microstructures of directionally solidified Al-Ag-Cu ternary eutectics. Trans. Indian Inst. Met. 65 (6), 777–782 (2012)

    Article  Google Scholar 

  8. Dennstedt, A., Ratke, L., Choudhury, A., Nestler, B.: New metallographic method for estimation of ordering and lattice parameter in ternary eutectic systems. Metall. Microstruct. Anal. 2 (3), 140–147 (2013)

    Article  Google Scholar 

  9. Genau, A.L., Ratke, L.: Crystal orientation and morphology in Al–Ag–Cu ternary eutectic. IOP Conf. Ser.: Mater. Sci. Eng. 27 (1), 012032 (2012)

    Google Scholar 

  10. Genau, A., Ratke, L.: Morphological characterization of the Al-Ag-Cu ternary eutectic. Int. J. Mater. Res. 103 (4), 469–475 (2012)

    Article  Google Scholar 

  11. Godenschwager, C., Schornbaum, F., Bauer, M., Köstler, H., Rüde, U.: A framework for hybrid parallel flow simulations with a trillion cells in complex geometries. In: Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, p. 35. ACM, New York (2013)

    Google Scholar 

  12. Hötzer, J., Jainta, M., Steinmetz, P., Dennstedt, A., Nestler, B.: Die Vielfalt der Musterbildung in Metallen (2015)

    Google Scholar 

  13. Hötzer, J., Jainta, M., Steinmetz, P., Nestler, B., Dennstedt, A., Genau, A., Bauer, M., Köstler, H., Rüde, U.: Large scale phase-field simulations of directional ternary eutectic solidification. Acta Materialia 93, 194–204 (2015)

    Article  Google Scholar 

  14. Hötzer, J., Tschukin, O., Said, M.B., Berghoff, M., Jainta, M., Barthelemy, G., Smorchkov, N., Schneider, D., Selzer, M., Nestler, B.: Calibration of a multi-phase field model with quantitative angle measurement. J. Mater. Sci. 51 (4), 1788–1797 (2016)

    Article  Google Scholar 

  15. Hötzer, J., Steinmetz, P., Jainta, M., Schulz, S., Kellner, M., Nestler, B., Genau, A., Dennstedt, A., Bauer, M., Köstler, H., Rüde, U.: Phase-field simulations of spiral growth during directional ternary eutectic solidification. Acta Materialia 106, 249–259 (2016)

    Article  Google Scholar 

  16. Jackson, K.A., Hunt, J.D.: Lamellar and rod eutectic growth. Aime Met. Soc. Trans. 236, 1129–1142 (1966)

    Google Scholar 

  17. MacSleyne, J.P., Simmons, J.P., De Graef, M.: On the use of 2-d moment invariants for the automated classification of particle shapes. Acta Materialia 56 (3), 427–437 (2008)

    Article  Google Scholar 

  18. Plapp, M.: Unified derivation of phase-field models for alloy solidification from a grand-potential functional. Phys. Rev. E 84, 031601 (2011)

    Article  Google Scholar 

  19. Rex, S.: ACCESS e.V., RWTH Aachen, SETA – Das Erstarrungsverhalten von mehrkomponentigen Legierungen, 2014-03-07. Accessed 25 Feb 2016

    Google Scholar 

  20. Rinaldi, M.D., Sharp, R.M., Flemings, M.C.: Growth of ternary composites from the melt: Part II. Metall. Trans. 3 (12), 3139–3148 (1972)

    Article  Google Scholar 

  21. Steinmetz, P., Yabansu, Y.C., Hötzer, J., Jainta, M., Nestler, B., Kalidindi, S.R.: Analytics for microstructure datasets produced by phase-field simulations. Acta Materialia 103, 192–203 (2016)

    Article  Google Scholar 

  22. Steinmetz, P., Hötzer, J., Kellner, M., Dennstedt, A., Nestler, B.: Large-scale phase-field simulations of ternary eutectic microstructure evolution. Comput. Mater. Sci. 117, 205–214 (2016)

    Article  Google Scholar 

  23. Steinmetz, P., Hötzer, J., Nestler, B.: Charakterisierung mehrkomponentiger Materialstrukturen durch den Einsatz von Hchstleistungsrechnern und Data Mining Konzepte (2015)

    Google Scholar 

  24. Steinmetz, P., Kellner, M., Hötzer, J., Dennstedt, A., Nestler, B.: Phase-field study of the pattern formation in Al–Ag–Cu under the influence of the melt concentration. Comput. Mater. Sci. 121, 6–13 (2016)

    Article  Google Scholar 

  25. Vondrous, A., Selzer, M., Hötzer, J., Nestler, B.: Parallel computing for phase-field models. Int. J. High Perform. Comput. Appl. 28 (1), 61–72 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hötzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Hötzer, J., Kellner, M., Steinmetz, P., Dietze, J., Nestler, B. (2016). Large-Scale Phase-Field Simulations of Directional Solidified Ternary Eutectics Using High-Performance Computing. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering ´16. Springer, Cham. https://doi.org/10.1007/978-3-319-47066-5_43

Download citation

Publish with us

Policies and ethics