Skip to main content

Molecular Simulation Study of Transport Properties for 20 Binary Liquid Mixtures and New Force Fields for Benzene, Toluene and CCl4

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ´16

Abstract

Nowadays, molecular modeling and simulation is being actively applied in physical, chemical and biological sciences as well as in engineering research and its importance will increase further in the future [31]. In the context of the chemical industry, molecular simulation has emerged as an alternative tool to estimate a wide variety of bulk phase thermodynamic property data, e.g., heat of formation, phase densities, transport coefficients, solubilities, rate constants, as well as to gain a deeper understanding of the subjacent molecular processes. Owing to the rapid increase in computing power and the development of new algorithms, the range of molecules that can be treated and the accuracy of the results is growing rapidly [18]. Traditionally, transport data have played a lesser role than other thermodynamic properties like vapor-liquid equilibria (VLE). Accurate experimental techniques for the measurement of transport properties were only developed around 1970, thus, the availability of such data is still low [52]. Furthermore, experimental measurements alone are not able to meet the demand for transport properties from the industry that may comprise several hundreds of data points for a single technical process [52]. On the other hand, classical theoretical methods are often incapable to accurately predict transport properties, especially when dealing with mixtures of liquids containing associating compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)

    Google Scholar 

  2. Alfe, D., Gillan, M.J.: First-principles calculation of transport coefficients. Phys. Rev. Lett. 81, 5161–5164 (1988)

    Google Scholar 

  3. Allen, M.P., Tildesley, D.J.: Computer simulation of liquids. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  4. Bonnaud, P., Nieto-Draghi, C., Ungerer, P.: Anisotropic united atom model including the electrostatic interactions of benzene. J. Phys. Chem. B 111, 3730–3741 (2007)

    Google Scholar 

  5. Campbell, A., Chatterjee, R.: The critical constants and orthobaric densities of acetone, chloroform, benzene, and carbon tetrachloride. Can. J. Chem. 47, 3893–3898 (1969)

    Google Scholar 

  6. Collings, A., Mills, R.: Temperature-dependence of self-diffusion for benzene and carbon tetrachloride. Trans. Faraday Soc. 66, 2761–2766 (1970)

    Google Scholar 

  7. Computational Chemistry Comparison and Benchmark Data Base, Standard Reference Data Base No. 101. The National Institute of Standards and Technology. http://cccbdb.nist.gov/mulliken2.asp (2015)

  8. Darken, L.S.: Diffusion, mobility and their interrelation through free energy in binary metallic systems. Trans. Am. Inst. Min. Met. Eng. 175, 184–201 (1948)

    Google Scholar 

  9. Deublein, S., Eckl, B., Stoll, J., Lishchuk, S.V., Guevara-Carrion, G., Glass, C.W., Merker, T., Bernreuther, M., Hasse, H., Vrabec, J.: ms2: a molecular simulation tool for thermodynamic properties. Comput. Phys. Commun. 182, 2350–2367 (2011)

    Google Scholar 

  10. Evans, D.J., Morris, G.P.: Statistical Mechanics of Nonequilibrium Liquids. Academic, London (1990)

    MATH  Google Scholar 

  11. Falcone, D.R., Douglass, D.C., McCall, D.W.: Self-diffusion in benzene. J. Phys. Chem. 71, 2754–2755 (1967)

    Google Scholar 

  12. Filippov, L.P.: Teploprovodnost’ rastvorov associirovannyh zhidkostej. Vest. Mosk. Univ., Ser. Fiz. Mat. Estestv. Nauk 10, 67–69 (1955)

    Google Scholar 

  13. Fischer, S.: Experimentelle und theoretische Untersuchung des Einflusses der thermischen Strahlung auf die effektive Wärmeleitfähigkeit von Flüssigkeiten. Ph.D. thesis, Universität Siegen, Germany (1984)

    Google Scholar 

  14. Fischer, J.D.: Transporteigenschaften reiner Flüssigkeiten und binärer Mischungen mit unterschiedlichen Wechselwirkungsparametern. Ph.D. thesis, TH Darmstadt (1986)

    Google Scholar 

  15. Fischer, J., Weiss, A.: Transport properties of liquids. V. Self diffusion, viscosity, and mass density of ellipsoidal shaped molecules in the pure liquid phase. Ber. Bunsenges. Phys. Chem. 90, 896–905 (1986)

    Google Scholar 

  16. Glass, C.W., Reiser, S., Rutkai, G., Deublein, S., Köster, A., Guevara-Carrion, G., Wafai, A., Horsch, M., Bernreuther, M., Windmann, T., Hasse, H., Vrabec, J.: ms2: a molecular simulation tool for thermodynamic properties, new version release. Comp. Phys. Commun. 185, 3302–3306 (2014)

    Google Scholar 

  17. Graupner, K., Winter, E.R.S.: Some measurements of the self-diffusion coefficients of liquids. J. Chem. Soc. (Resumed) 1, 1152–1150 (1952)

    Google Scholar 

  18. Gubbins, K.E., Quirke, N.: Introduction to Molecular Simulation and Industrial Applications: Methods, Examples and Prospects. Gordon and Breach Science Publishers, Amsterdam (1996)

    Google Scholar 

  19. Harris, K.R., Alexander, J.J., Goscinska, T., Malhotra, R., Woolf, L.A., Dymond, J.H.: Temperature and density dependence of the selfdiffusion coefficients of liquid n-octane and toluene. Mol. Phys. 78, 235–248 (1993)

    Google Scholar 

  20. Hiraoka, H.: Self-diffusion of benzene under pressure. Bull. Chem. Soc. Jpn. 32, 423–424 (1959)

    Google Scholar 

  21. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular theory of gases and liquids. Wiley, New York (1954)

    MATH  Google Scholar 

  22. Ikeuchi, H., Kanakubo, M., Okuno, S., Sato, R., Fujita, K., Hamada, M., Shoda, N., Fukai, K., Okada, K., Kanazawa, H.: Densities and viscosities of tris(acetylacetonato)cobalt(III) complex solutions in various solvents. J. Solut. Chem. 39, 1428–1453 (2010)

    Google Scholar 

  23. Krishna, R., van Baten, J.M.: The darken relation for multicomponent diffusion in liquid mixtures of linear alkanes: an investigation using molecular dynamics (MD) simulations. Ind. Eng. Chem. Res. 44, 6939–6847 (2005)

    Google Scholar 

  24. Krüger, G., Weiss, R.: Diffusionskonstanten einiger organischer Flüssigkeiten. Z. Naturforsch. A 25, 777–780 (1970)

    Google Scholar 

  25. Lei, Q.F., Lin R.-S., Ni, D.Y., Hou, Y.C.: Thermal conductivities of some organic solvents and their binary mixtures. J. Chem. Eng. Data 42, 971–974 (1997)

    Google Scholar 

  26. Lemmon, E.W., Span, R.: Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51, 785–850 (2006)

    Google Scholar 

  27. Li, J., Liu, H., Hu, Y.: A mutual-diffusion-coefficient model based on local composition. Fluid Phase Equilib. 187–188, 193–208 (2001)

    Google Scholar 

  28. Liu, X., Schnell, S.K., Simon, J.M., Bedeaux, D., Kjelstrup, S., Bardow, A., Vlugt, T.J.H.: Fick diffusion coefficients of liquid mixtures directly obtained from equilibrium molecular dynamics. J. Phys. Chem. B 115, 12921–12929 (2011)

    Google Scholar 

  29. Luchinskii, G.: Mechanical characteristics of Halogene anhydride’s molecules. Zh. Obshch. Khim. 7, 2116–2127 (1937)

    Google Scholar 

  30. Lustig, R.: Angle-average for the powers of the distance between two separated vectors. Mol. Phys. 65, 175–179 (1988)

    Google Scholar 

  31. Maginn, E.J., Elliot, J.R.: Historical perspective and current outlook for molecular dynamics as a chemical engineering tool. Ind. Eng. Chem. Res. 49, 3059–3078 (2010)

    Google Scholar 

  32. McCool, M.A., Collings, A.F., Woolf, L.A.: Pressure and temperature dependence of the self-diffusion of benzene. J. Chem. Soc. Faraday Trans. 1 68, 1489–1497 (1972)

    Google Scholar 

  33. Merker, T., Engin, C., Vrabec, J., Hasse, H.: Molecular model for carbon dioxide optimized to vapor-liquid equilibria. J. Chem. Phys. 132, 234512 (2010)

    Google Scholar 

  34. Merker, T., Vrabec, J., Hasse, H.: Engineering molecular models: efficient parameterization procedure and cyclohexanol as case study. Soft Matter 10, 3–25 (2012)

    Google Scholar 

  35. Muñoz-Muñoz, Y.M., Guevara-Carrion, G., Llano-Restrepo, M., Vrabec, J.: Lennard-Jones force field parameters for cyclic alkanes from cyclopropane to cyclohexane. Fluid Phase Equilib. 404, 150–160 (2015)

    Google Scholar 

  36. Nieto-Draghi, C., Bonnaud, P., Ungerer, P.: Anisotropic united atom model including the electrostatic interactions of methylbenzenes. I. Thermodynamic and structural properties. J. Phys. Chem. C 111, 15686–15699 (2007)

    Google Scholar 

  37. Nieto-Draghi, C., Bonnaud, P., Ungerer, P.: Anisotropic united atom model including the electrostatic interactions of methylbenzenes. II. Transport properties. J. Phys. Chem. C 111, 15942–15951 (2007)

    Google Scholar 

  38. Pickup, S., Blum, F.D.: Self-diffusion of toluene in polystyrene solutions. Macromolecules 22, 3961–3968 (1989)

    Google Scholar 

  39. Poling, B.E., Thomson, D.W., Friend, D.G., Rowley, R.L., Wilding, W.V.: Section 2. Physical and chemical data. In: Perry, R.H., Green, D.W. (eds.) Perry’s Chemical Engineers’ Handbook, 8th edn. McGraw-Hill, New York (2008)

    Google Scholar 

  40. Požar, M., Seguier, J.B., Guerche, J., Mazighi, R., Zoranić, L., Mijaković, M., Kežić-Lovrinčević, B., Sokolić, F., Perera, A.: Simple and complex disorder in binary mixtures with benzene as a common solvent. Phys. Chem. Chem. Phys. 17, 9885–9898 (2015)

    Google Scholar 

  41. Rathbun, R., Babb, A.: Self-diffusion in liquids. III. Temperature dependence in pure liquids. J. Phys. Chem. 65, 1072–1074 (1961)

    Google Scholar 

  42. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)

    Google Scholar 

  43. Rowley, R., White, G.: Thermal conductivities of ternary liquid mixtures. J. Chem. Eng. Data 32, 63–69 (1987)

    Google Scholar 

  44. Rutten, P.W.M.: Diffusion in Liquids. Delft University Press, Delft (1992)

    Google Scholar 

  45. Santos, F.J.V., Nieto de Castro, C.A., Dymond, J.H., Dalaouti, N.K., Assael, M.J., Nagashima, A.: Standard reference data for the viscosity of toluene. J. Phys. Chem. Ref. Data 35, 1–8 (2006)

    Google Scholar 

  46. Schnabel, T., Vrabec, J., Hasse, H.: Henry’s law constants of methane, nitrogen, oxigen and carbon dioxide in ethanol from 273 to 498 K: prediction from molecular simulation. Fluid Phase Equilib. 233, 134–143 (2005)

    Google Scholar 

  47. Schnabel, T., Srivastava, A., Vrabec, J., Hasse, H.: Hydrogen bonding of methanol in supercritical CO2: comparison between 1H-NMR spectroscopic data and molecular simulation results. J. Phys. Chem. B 111, 9871–9878 (2007)

    Google Scholar 

  48. Schoen, M., Hoheisel, C.: The mutual diffusion coefficient D_12 in binary liquid model mixtures. Molecular dynamics calculations based on Lennard-Jones (12-6) potentials. Mol. Phys. 52, 33–56 (1984)

    Google Scholar 

  49. Thol, M., Lemmon, E.W., Span, R.: Equation of state for benzene for temperatures from the melting Line up to 725 K with pressures up to 500 MPa. High Temp. High Press. 41, 81–97 (2012)

    Google Scholar 

  50. Trepǎdus, V., Rǎpeanu, S., Pǎdureanu, I., Parfenov, V.A., Novikov, A.G.: Study of molecular rotations in some aromatic compounds by cold neutron scattering. J. Chem. Phys. 60, 2832–2839 (1974)

    Google Scholar 

  51. Vignes, A.: Diffusion in binary solutions. Variation of diffusion coefficient with composition. Ind. Eng. Chem. Fundam. 5, 189–199 (1966)

    Google Scholar 

  52. Wakeham, W.A.: Transport properties and industry. In: Letcher, T.M. (ed.) Chemical Thermodynamics for Industry. The Royal Society of Chemistry, London (2004)

    Google Scholar 

  53. Wensink, E.J.W., Hoffmann, A.C., van Maaren, P.J., van der Spoel, D.: Dynamic properties of water/alcohol mixtures studied by computer simulation. J. Chem. Phys. 119, 7308–7317 (2003)

    Google Scholar 

  54. Wilson, G.M.: Vapor-liquid equilibrium. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86, 127–130 (1964)

    Google Scholar 

  55. Windfield, D.J.: Measurement of the apparent diffusion coefficient of toluene by quasielastic neutron scattering. J. Chem. Phys. 54, 3643–3645 (1971)

    Google Scholar 

  56. Windmann, T., Linnemann, M., Vrabec, J.: Fluid phase behavior of nitrogen + acetone and oxygen + acetone by molecular simulation, experiment and the Peng-Robinson equation of state. J. Chem. Eng. Data 59, 28–38 (2014)

    Google Scholar 

  57. Zhou, M., Yuan, X., Zhang, Y., Yu, K.T.: Local CompLocal composition based Maxwell–Stefan diffusivity model for binary liquid Systemsosition based Maxwell–Stefan diffusivity model for binary liquid systems. Ind. Eng. Chem. Res. 52, 10845–10852 (2013)

    Google Scholar 

  58. Zhu, Q., Moggridge, G.D., D’Agostino, C.: A local composition model for the prediction of mutual diffusion coefficients in binary liquid mixtures from tracer diffusion coefficients. Chem. Eng. Sci. 132, 250–258 (2015)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by Deutsche Forschungsgemeinschaft. This work was carried out under the auspices of the Boltzmann-Zuse Society (BZS) of Computational Molecular Engineering. The simulations were performed on the national supercomputer Hazel Hen at the High Performance Computing Center Stuttgart (HLRS) within the project MMHBF2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadran Vrabec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Guevara-Carrion, G., Janzen, T., Muñoz-Muñoz, Y.M., Vrabec, J. (2016). Molecular Simulation Study of Transport Properties for 20 Binary Liquid Mixtures and New Force Fields for Benzene, Toluene and CCl4. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering ´16. Springer, Cham. https://doi.org/10.1007/978-3-319-47066-5_42

Download citation

Publish with us

Policies and ethics