Skip to main content

Direct Numerical Simulation of Heated Pipe Flow with Strong Property Variation

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ´16

Abstract

Using supercritical fluid as coolant in a power cycle is generally considered as an advanced solution for energy conversion. When the pressure is above the critical point (P c), thermo-physical properties vary significantly with temperature, which leads to complicated heat transfer phenomena. In the current project, direct numerical simulation (DNS) in a horizontal heated pipe has been developed for supercritical CO2 using the numerical solver based on OpenFOAM. DNS enables us to investigate the detailed turbulence modulation and heat transfer characteristics. The horizontal layout of the pipe leads to a flow stratification, which is not observed in the vertical pipes from the report in the last year. Furthermore, the obtained turbulence data are serving for the development of advanced turbulence models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. NIST Chemistry Webbook: In: Lemmon, E., McLinden, M., Friend, D., Linstrom, P., Mallard, W. (eds.) NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg (2011). http://webbook.nist.gov/chemistry/

  2. Bae, J.H., Yoo, J.Y., Choi, H.: Direct numerical simulation of turbulent supercritical flows with heat transfer. Phys. Fluids 17 (10), 105104 (2005)

    Article  MATH  Google Scholar 

  3. Cheng, X., Kuang, B., Yang, Y.: Numerical analysis of heat transfer in supercritical water cooled flow channels. Nucl. Eng. Des. 237 (3), 240–252 (2007)

    Article  Google Scholar 

  4. Chu, X., Laurien, E.: Investigation of convective heat transfer to supercritical carbon dioxide with direct numerical simulation. In: High Performance Computing in Science and Engineering’15, pp. 315–331. Springer, Cham (2016)

    Google Scholar 

  5. Chu, X., Laurien, E., McEligot, D.M.: Direct numerical simulation of strongly heated air flow in a vertical pipe. Int. J. Heat Mass Transf. 101, 1163–1176 (2016)

    Article  Google Scholar 

  6. Dostal, V., Driscoll, M.J., Hejzlar, P.: A supercritical carbon dioxide cycle for next generation nuclear reactors. Ph.D. thesis, Massachusetts Institute of Technology (2004)

    Google Scholar 

  7. Duffey, R.B., Pioro, I.L.: Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey). Nucl. Eng. Des. 235 (8), 913–924 (2005)

    Article  Google Scholar 

  8. Eggels, J.G., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich, R., Nieuwstadt, F.: Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175–210 (1994)

    Article  Google Scholar 

  9. He, S., Kim, W.S., Bae, J.H.: Assessment of performance of turbulence models in predicting supercritical pressure heat transfer in a vertical tube. Int. J. Heat Mass Transf. 51 (19–20), 4659–4675 (2008)

    Article  MATH  Google Scholar 

  10. Jackson, J.D.: Fluid flow and convective heat transfer to fluids at supercritical pressure. Nucl. Eng. Des. 264, 24–40 (2013)

    Article  Google Scholar 

  11. Li, X., Hashimoto, K., Tominaga, Y., Tanahashi, M., Miyauchi, T.: Numerical study of heat transfer mechanism in turbulent supercritical CO2 channel flow. J. Thermal Sci. Technol. 3 (1), 112–123 (2008)

    Article  Google Scholar 

  12. Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140 (2), 233–258 (1998). http://dx.doi.org/10.1006/jcph.1998.5882

    Article  MathSciNet  MATH  Google Scholar 

  13. Nemati, H., Patel, A., Boersma, B.J., Pecnik, R.: Mean statistics of a heated turbulent pipe flow at supercritical pressure. Int. J. Heat Mass Transf. 83, 741–752 (2015)

    Article  Google Scholar 

  14. Pandey, S., Laurien, E.: Heat transfer analysis at supercritical pressure using two layer theory. J. Supercrit. Fluids 109, 80–86 (2016)

    Article  Google Scholar 

  15. Schoppa, W., Hussain, F.: Coherent structure dynamics in near-wall turbulence. Fluid Dyn. Res. 26 (2), 119–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620–631 (1998)

    Article  Google Scholar 

  17. Wu, X., Moin, P.: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81–112 (2008)

    Article  MATH  Google Scholar 

  18. Yang, J., Oka, Y., Ishiwatari, Y., Liu, J., Yoo, J.: Numerical investigation of heat transfer in upward flows of supercritical water in circular tubes and tight fuel rod bundles. Nucl. Eng. Des. 237 (4), 420–430 (2007)

    Article  Google Scholar 

  19. Yoo, J.Y.: The turbulent flows of supercritical fluids with heat transfer. Ann. Rev. Fluid Mech. 45, 495–525 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research presented in this paper is supported by the Forschungsinstitut fuer Kerntechnik und Energiewandlung e.V., for project DNSTHTSC. The authors would like to thank to the HLRS and Cray team for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Chu, X., Laurien, E., Pandey, S. (2016). Direct Numerical Simulation of Heated Pipe Flow with Strong Property Variation. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering ´16. Springer, Cham. https://doi.org/10.1007/978-3-319-47066-5_32

Download citation

Publish with us

Policies and ethics