Skip to main content

Numerical Simulation of Subsonic and Supersonic Impinging Jets II

  • Conference paper
  • First Online:

Abstract

This report covers two aspects of impinging jets: heat transfer enhancement and sound source mechanisms. Recent experimental investigations indicate a possible increase of up to 40 % of heat transfer efficiency due to a pulsation of the inlet. However, the underlying physical effects are still unclear. Performing direct numerical simulations, we were able to compute the eigenfrequencies of the impinging jet. Our hypothesis is that pulsating with that frequency leads to a maximal increase of ring vortices and consequently of the heat transfer at the impinging plate. First results of a pulsed impinging jet are shown. In addition, impinging compressible jets may cause deafness and material fatigue due to immensely loud tonal noise. It is generally accepted that a feedback mechanism is responsible for impinging tones. However, it is being discussed which mechanism creates those strong pressure waves. Using direct numerical simulations we were able to identify the source mechanism for under-expanded impinging jets with a nozzle pressure ratio of 2.15 and a plate distance of 5 diameters. We found two different types of interactions between vortices and shocks to be responsible for the generation of the impinging tones.

This is a preview of subscription content, log in via an institution.

References

  1. Bogey, C., de Cacqueray, N., Bailly, C.: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228 (Nr. 5), 1447–1465 (2009). http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2008.10.042, doi:http://dx.doi.org/10.1016/j.jcp.2008.10.042, ISSN 0021–9991

  2. Chung, Y.M., Luo, K.H.: Unsteady heat transfer analysis of an impinging jet. J. Heat Transf. 124, 12(Nr. 6), 1039–1048 (2002). ISBN 0022–1481

    Google Scholar 

  3. Cziesla, T., Biswas, G., Chattopadhyay, H., Mitra, N.: Large-eddy simulation of flow and heat transfer in an impinging slot jet. Int. J. Heat Fluid Flow 22 (Nr. 5), 500–508 (2001). http://dx.doi.org/http://dx.doi.org/10.1016/S0142-727X(01)00105-9, doi:http://dx.doi.org/10.1016/S0142--727X(01)00105--9, ISSN 0142–727X

  4. Dairay, T., Fortuné, V., Lamballais, E., Brizzi, L.: LES of a turbulent jet impinging on a heated wall using high-order numerical schemes. Int. J. Heat Fluid Flow 50 (Nr. 0), 177–187 (2014). http://dx.doi.org/http://dx.doi.org/10.1016/j.ijheatfluidflow.2014.08.001, doi:http://dx.doi.org/10.1016/j.ijheatfluidflow.2014.08.001, ISSN 0142–727X

  5. Dairay, T., Fortuné, V., Lamballais, E., Brizzi, L.-E.: Direct numerical simulation of a turbulent jet impinging on a heated wall. J. Fluid Mech. 764 (2), 362–394 (2015). http://dx.doi.org/10.1017/jfm.2014.715, doi:10.1017/jfm.2014.715, ISSN 1469–7645

  6. Eidson, T.M., Erlebacher, G.: Implementation of a fully balanced periodic tridiagonal solver on a parallel distributed memory architecture. Concurr.: Pract. Exp. 7 (Nr. 4), 273–302 (1995)

    Google Scholar 

  7. Hattori, H., Nagano, Y.: Direct numerical simulation of turbulent heat transfer in plane impinging jet. Int. J. Heat Fluid Flow 25 (Nr. 5), 749–758 (2004). http://dx.doi.org/http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.05.004, doi:http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.05.004, ISSN 0142–727X. Selected papers from the 4th International Symposium on Turbulence Heat and Mass Transfer

  8. Henderson, B.: The connection between sound production and jet structure of the supersonic impinging jet. J. Acoust. Soc. Am. 111,(Nr. 2), 735–747 (2002). http://dx.doi.org/http://dx.doi.org/10.1121/1.1436069, doi:http://dx.doi.org/10.1121/1.1436069

  9. Henderson, B., Powell, A.: Experiments concerning tones produced by an axisymmetric choked jet impinging on flat plates. J. Sound Vib. 168 (Nr. 2), 307–326 (1993). http://dx.doi.org/http://dx.doi.org/10.1006/jsvi.1993.1375, doi:http://dx.doi.org/10.1006/jsvi.1993.1375, ISSN 0022–460X

  10. Ho, C.-M., Nosseir, N.S.: Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105 (4), 119–142 (1981), http://dx.doi.org/10.1017/S0022112081003133, doi:10.1017/S0022112081003133, ISSN 1469–7645

  11. Janetzke, T.: Experimentelle Untersuchungen zur Effizienzsteigerung von Prallkühlkonfigurationen durch dynamische Ringwirbel hoher Amplitude, TU Berlin, Diss. (2010)

    Google Scholar 

  12. Peña Fernández, J.J., Sesterhenn, J.: Interaction between the shear layer, shock-wave and vortex ring in a starting free jet injecting into a plenum. In: European Turbulence Conference, Delft (2015)

    Google Scholar 

  13. Rockwell, D., Naudascher, E.: Self-sustained oscillations of impinging free shear layers. Annu. Rev. Fluid Mech. 11 (Nr. 1), 67–94 (1979)

    Google Scholar 

  14. Sesterhenn, J.L.: A characteristic–type formulation of the Navier–Stokes equations for high order upwind schemes. Comput. Fluids 30 (Nr. 1), 37–67 (2001)

    Google Scholar 

  15. Weigand, B., Spring, S.: Multiple jet impingement – a review. Heat Transf. Res. 42 (Nr. 2), 101–142 (2011). ISSN 1064–2285

    Google Scholar 

  16. Wilke, R., Sesterhenn, J.: Direct numerical simulation of heat transfer of a round subsonic impinging jet. In: Active Flow and Combustion Control 2014, pp. 147–159. Springer, Cham (2015)

    Google Scholar 

  17. Wilke, R., Sesterhenn, J.: Numerical simulation of impinging jets. In: High Performance Computing in Science and Engineering ’14, pp. 275–287. Springer, Cham (2015)

    Google Scholar 

  18. Wilke, R., Sesterhenn, J.: Numerical simulation of subsonic and supersonic impinging jets. In: High Performance Computing in Science and Engineering´ 15, pp. 349–369. Springer, Cham (2016)

    Google Scholar 

  19. Wilke, R., Sesterhenn, J.: On the origin of impinging tones at low supersonic flow (2016). arXiv preprint, arXiv:1604.05624

    Google Scholar 

  20. Wilke, R., Sesterhenn, J.: Statistics of fully turbulent impinging jets (2016). arXiv preprint, arXiv:1606.09167

    Google Scholar 

  21. Zuckerman, N., Lior, N.: Impingement heat transfer: correlations and numerical modeling. J. Heat Transf. 127 (Nr. 5), 544–552 (2005). ISBN 0022–1481

    Google Scholar 

Download references

Acknowledgements

The simulations were performed on the national supercomputer Cray XC40 (Hornet, Hazelhen) at the High Performance Computing Center Stuttgart (HLRS) under the grant numbers GCS-NOIJ/12993 and GCS-ARSI/44027.

The authors gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) as part of collaborative research center SFB 1029 “Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wilke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Wilke, R., Sesterhenn, J. (2016). Numerical Simulation of Subsonic and Supersonic Impinging Jets II. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering ´16. Springer, Cham. https://doi.org/10.1007/978-3-319-47066-5_29

Download citation

Publish with us

Policies and ethics