Skip to main content

Turbulent Skin-Friction Drag Reduction at High Reynolds Numbers

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ´16

Abstract

Direct Numerical Simulation (DNS) of turbulent channel flows at moderately high values of the Reynolds number (Re) are performed to examine how Re affects the capabilities of wall-based spanwise-forcing techniques to achieve turbulent skin-friction drag reduction. With the present new data, a relationship could be derived and validated, which predicts the amount of drag reduction at several values of Re. The present study shows that a drag reduction of nearly 30 % would still be possible for an airplane at flight Reynolds numbers thanks to the spanwise forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Auteri, F., Baron, A., Belan, M., Campanardi, G., Quadrio, M.: Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow. Phys. Fluids 22 (11), 115103/14 (2010)

    Article  Google Scholar 

  2. Berger, T.W., Kim, J., Lee, C., Lim, J.: Turbulent boundary layer control utilizing the Lorentz force. Phys. Fluids 12 (3), 631–649 (2000)

    Article  MATH  Google Scholar 

  3. Chang, Y., Collis, S.S., Ramakrishnan, S.: Viscous effect in control near-wall turbulence. Phys. Fluids 14, 4069–4080 (2002)

    Article  MATH  Google Scholar 

  4. Choi, K.S., Graham, M.: Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys. Fluids 10 (1), 7–9 (1998)

    Article  Google Scholar 

  5. Choi, K.S., DeBisschop, J., Clayton, B.: Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J. 36 (7), 1157–1162 (1998)

    Article  Google Scholar 

  6. Choi, J.I., Xu, C.X., Sung, H.J.: Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J. 40 (5), 842–850 (2002)

    Article  Google Scholar 

  7. Du, Y., Karniadakis, G.E.: Suppressing wall turbulence by means of a transverse traveling wave. Science 288, 1230–1234 (2000)

    Article  Google Scholar 

  8. Du, Y., Symeonidis, V., Karniadakis, G.E.: Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech. 457, 1–34 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. García-Mayoral, R., Jiménez, J.: Drag reduction by riblets. Phil. Trans. R. Soc. A 369 (1940), 1412–1427 (2011)

    Article  Google Scholar 

  10. Gatti, D., Quadrio, M.: Performance losses of drag-reducing spanwise forcing at moderate values of the Reynolds number. Phys. Fluids 25, 125109(17) (2013)

    Article  Google Scholar 

  11. Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–582 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jung, W., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4 (8), 1605–1607 (1992)

    Article  Google Scholar 

  13. Luchini, P., Quadrio, M.: A low-cost parallel implementation of direct numerical simulation of wall turbulence. J. Comput. Phys. 211 (2), 551–571 (2006)

    Article  MATH  Google Scholar 

  14. Luchini, P., Manzo, F., Pozzi, A.: Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87–109 (1991)

    MATH  Google Scholar 

  15. Nikitin, N.V.: On the mechanism of turbulence suppression by spanwise surface oscillations. Fluid Dyn. 35 (2), 185–190 (2000)

    Article  MATH  Google Scholar 

  16. Pang, J., Choi, K.S.: Turbulent drag reduction by Lorentz force oscillation. Phys. Fluids 16 (5), L35–L38 (2004)

    Article  MATH  Google Scholar 

  17. Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillation. J. Fluid Mech. 521, 251–271 (2004)

    Article  MATH  Google Scholar 

  18. Quadrio, M., Sibilla, S.: Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424, 217–241 (2000)

    Article  MATH  Google Scholar 

  19. Quadrio, M., Ricco, P., Viotti, C.: Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ricco, P., Quadrio, M.: Wall-oscillation conditions for drag reduction in turbulent channel flow. Int. J. Heat Fluid Flow 29, 601–612 (2008)

    Article  Google Scholar 

  21. Ricco, P., Wu, S.: On the effects of lateral wall oscillations on a turbulent boundary layer. Exp. Therm. Fluid Sci. 29 (1), 41–52 (2004)

    Article  Google Scholar 

  22. Stroh, A., Gatti, D., Hasegawa, Y., Frohnapfel, B.: Influence of drag-reducing near-wall turbulence control on spectral properties of Reynolds shear stress. In: Proceedings of the 11th ETMM, Palermo (2016)

    Google Scholar 

  23. Tamano, S., Itoh, M.: Drag reduction in turbulent boundary layers by spanwise traveling waves with wall deformation. J. Turbul. 13, N9 (2012)

    Article  Google Scholar 

  24. Touber, E., Leschziner, M.: Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150–200 (2012)

    Article  MATH  Google Scholar 

  25. Trujillo, S., Bogard, D., Ball, K.: Turbulent boundary layer drag reduction using an oscillating wall. AIAA Paper 97–1870 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Gatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Gatti, D. (2016). Turbulent Skin-Friction Drag Reduction at High Reynolds Numbers. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering ´16. Springer, Cham. https://doi.org/10.1007/978-3-319-47066-5_26

Download citation

Publish with us

Policies and ethics