Skip to main content

Towards Solving Fluid Flow Domain Identification Problems with Adjoint Lattice Boltzmann Methods

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ´16

Abstract

A novel strategy towards solving fluid flow domain identification problems for incompressible Newtonian fluids is proposed and investigated in this paper. The resulting numerical approach is of great importance for academic studies as well as for medical and industrial applications. For example, it can be used in combination with Phase Contrast MRI measurements to characterise flow dynamics as well as flow domains highly accurately. The problem is formulated as a optimisation problem which minimised the distance between a given and a simulated flow field, whereby the latter one is the solution of a parameterised porous media BGK-Boltzmann model. The parameter represents the porosity distributed in the domain and its distribution is obtained as the final result of the optimisation problem. The proposed gradient-based solution strategy makes use of an adjoint lattice Boltzmann method (ALBM). Due to their similar structure to lattice Boltzmann methods (LBM), they also show excellent parallelisation behaviour. In this preliminary work, first validation results are presented as well as performance results and improvements for both single core and parallel implementation. In particular, with a simple domain identification test case a cube is being identified by position and shape inside a wind tunnel in only few optimisation steps, even with only partial flow data being available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    www.openlb.net

  2. 2.

    https://www.scc.kit.edu/dienste/forhlr.php/

References

  1. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge/New York (1998)

    Book  MATH  Google Scholar 

  2. Fietz, J., et al.: Optimized hybrid parallel lattice Boltzmann fluid flow simulations on complex geometries. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012 Parallel Processing. Lecture Notes in Computer Science, vol. 7484, pp. 818–829. Springer, Berlin/Heidelberg (2012). ISBN:9783642328190, doi:10.1007/9783642328206_81, http://dx.doi.org/10.1007/9783642328206_81

  3. Geiger, C., Kanzow, C.: Numerische Verfahren zur Lösung un-restringierter Optimierungsaufgaben. Springer-Lehrbuch. Springer, Berlin (1999). ISBN:3540662200, http://swbplus.bszbw.de/bsz080178243inh.htm%20;%20http://swbplus.bszbw.de/bsz080178243cov.htm

    Google Scholar 

  4. Gunzburger, M.D.: Perspectives in flow control and optimization. Advances in design and control. Society for Industrial and Applied Mathematics, Philadelphia (2002). http://www.ulb.tu-darmstadt.de/tocs/129935174.pdf

    Book  Google Scholar 

  5. Hänel, D.: Molekulare Gasdynamik. Springer (2004)

    Google Scholar 

  6. Henn, T., et al.: Parallel dilute particulate flow simulations in the human nasal cavity. Comput. Fluids 124, 197–207 (2016). ISSN:0045-7930, doi:http://dxdoiorg/10.1016/jcompfluid2015.08002, http://www.sciencedirect.com/science/article/pii/S0045793015002728

  7. Heuveline, V., Strauss, F.: Shape optimization towards stability in constrained hydrodynamic systems. J. Comput. Phys. 228, 938–951 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Heuveline, V., Krause, M.J., Latt, J.: Towards a hybrid parallelization of lattice Boltzmann methods. Comput. Math. Appl. 58, 1071–1080 (2009). doi:10.1016/j.camwa2009.04001, URL:http://dx.doi.org/10.1016/j.camwa.2009.04.001

  9. Kirk, A., et al.: Lattice Boltzmann topology optimization for transient flow. In: MAESC 2011 Conference May 3, 2011. Christian Brothers University Memphis, Tennessee (2011). http://wwwmaescorg/maesc11/Papers/Kirk_Kreissl_Pingen_Maute_LatticeBoltzmannTopologyOptimizationForTransientpaper.pdf

    Google Scholar 

  10. Krause, M.J.: Fluid flow simulation and optimisation with lattice Boltzmann methods on high performance computers: application to the human respiratory system. Eng. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019768. PhD thesis, Karlsruhe Institute of Technology (KIT), Universität Karlsruhe (TH), Karlsruhe, July 2010. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019768

  11. Massaioli, F., Amati, G.: Achieving high performance in a LBM code using OpenMP. In: EWOMP 2002, Rome (2002)

    Google Scholar 

  12. Ni, J., et al.: Parallelism of lattice Boltzmann method (LBM) for Lid- driven cavity flows. In: High Performance Computing and Applications (HPCA2004), Shanghai, 8–10 Aug 2004. Accepted and being published in lecture note in computer science (LNCS). Springer, Heidelberg (2004)

    Google Scholar 

  13. Pingen, G., Evgrafov, A., Maute, K.: Topology optimization of flow domains using the lattice Boltzmann method. Struct. Multidiscip. Optim. 34 (6), 507–524 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pingen, G., Evgrafov, A., Maute, K.: A parallel Schur complement solver for the solution of the adjoint steady-state lattice Boltzmann equations: application to design optimisation. Int. J. Comput. Fluid Dyn. 22 (7), 457–464 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pingen, G., Evgrafov, A., Maute, K.: Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization. Comput. Fluids 38 (4), 910–923 (2009). ISSN:0045-7930, doi:10.1016/jcompfluid200810.002, http://www.sciencedirect.com/science/article/B6V264-TTMJN3-1/2/16383afe088243863f7bc5f569da1279

  16. Pohl, T., et al.: Performance evaluation of parallel large-scale lattice Boltzmann applications on three supercomputing architectures. In: Proceedings of the ACM/IEEE SC2004 Conference on Supercomputing, Washington, DC, p. 21 (2004)

    Google Scholar 

  17. Saint-Raymond, L.: From the BGK model to the Navier-Stokes equations. Annales Scientifiques de l’École Normale Supérieure 36 (2), 271–317 (2003). ISSN:0012-9593, doi:10.1016 /S0012-9593(03) 00010-7, http://www.sciencedirect.com/science/article/B6VKH48HS9DK5/2/4b7102c9ed9f501112dc9b08b7c9ae3d

  18. Sukop, M.C., Thorne, D.T.: Lattice Boltzmann Modeling. Springer, Berlin/New York (2006)

    Book  Google Scholar 

  19. Tekitek, M.M., et al.: Adjoint lattice Boltzmann equation for parameter identification. Comput. Fluids 35, 805–813 (2006)

    Article  MATH  Google Scholar 

  20. Wolf-Gladrow, D.A.: Lattice-Gas, Cellular Automata and Lattice Boltzmann Models, An Introduction. Lecture Notes in Mathematics. Springer, Heidelberg/Berlin (2000). ISBN:3540669736

    Google Scholar 

  21. Zeiser, T., Götz, J., Stürmer, M.: On performance and accuracy of lattice Boltzmann approaches for single phase flow in porous media: a toy became an accepted tool – how to maintain its features despite more and mor complex (physical) models and changing trends in high performance computing!? In: Krause, E., Shokin, Y.I., Shokina, N. (eds.) Computational Science and High Performance Computing III, Proceedings of 3rd Russian-German Workshop on High Performance Computing, Novosibirsk, 23–27 July 2007. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 101. Springer (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias J. Krause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Krause, M.J., Förster, B., Mink, A., Nirschl, H. (2016). Towards Solving Fluid Flow Domain Identification Problems with Adjoint Lattice Boltzmann Methods. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering ´16. Springer, Cham. https://doi.org/10.1007/978-3-319-47066-5_23

Download citation

Publish with us

Policies and ethics