Skip to main content

Smoothed Particle Hydrodynamics for Numerical Predictions of Primary Atomization

  • Conference paper
  • First Online:

Abstract

A code framework based on the Smoothed Particle Hydrodynamics (SPH) method has been used to investigate the liquid disintegration processes of an air-assisted atomizer. As the flow physics includes spatial and temporal scales which cover at least 4 orders of magnitude, the use of HPC resources is indispensable. The application of the SPH method is rather new to computational fluid dynamics (CFD). We therefore compare our in-house code to established CFD tools in order to assess the computational performance as well as the quality the physical results. It can be shown, that SPH is able to outperform commonly used grid based methods concerning the scalability behavior as well as the absolute computing speed. The three dimensional test case to be presented consists of 1.2 billion particles. The simulation has been run on the ForHLR I cluster, where 2560 cores have been used for 60 days. The simulation is the most detailed numerical investigation of a prefilmer based atomizer and one of the largest SPH multi-phase flow simulations ever. It did capture the experimentally observed bag breakup regime with good agreement of the spatial liquid disintegration and the breakup time scales.

This is a preview of subscription content, log in via an institution.

References

  1. Adami, S., Hu, X.Y., Adams, N.A.: A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J. Comput. Phys. 229 (13), 5011–5021 (2010)

    Article  MATH  Google Scholar 

  2. Bendifallah, Z., Jalby, W., Noudohouenou, J., Oseret, E., Palomares, V., Rubial, A.C.: PAMDA: performance assessment using MAQAO toolset and differential analysis. In: Tools for High Performance Computing 2013, pp. 107–127. Springer, Berlin/New York (2014)

    Google Scholar 

  3. Brackbill, J.U., Kothe, D.B.: Dynamical Modeling of Surface Tension. NASA Conference Publication, pp. 693–700 (1996)

    Google Scholar 

  4. Braun, S., Höfler, C., Koch, R., Bauer, H.-J.: Modeling fuel injection in gas turbines using the meshless smoothed particle hydrodynamics method. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, pp. V01AT04A001-V01AT04A001. American Society of Mechanical Engineers, New York (2015)

    Google Scholar 

  5. Braun, S., Wieth, L., Koch, R., Bauer, H.-J.: Influence of trailing edge height on primary atomization: numerical studies applying the smoothed particle hydrodynamics (SPH) method. In: 13th International Conference on Liquid Atomization and Spray Systems, Taiwan (2015)

    Google Scholar 

  6. Braun, S., Krug, M., Wieth, L., Höfler, C. Koch, R., Bauer, H.-J.: Simulation of primary atomization: assessment of the smoothed particle hydrodynamics (SPH) method. In: 13th International Conference on Liquid Atomization and Spray Systems, Taiwan (2015)

    Google Scholar 

  7. Braun, S., Wieth, L., Koch, R., Bauer, H.-J.: A framework for permeable boundary conditions in SPH: inlet, outlet, periodicity. In: 10th International SPHERIC Workshop, Parma (2015)

    Google Scholar 

  8. Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29 (4), 551–559 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gepperth, S., Guildenbecher, D., Koch, R., Bauer, H.J.: Pre-filming primary atomization: experiments and modeling. In: 23rd European Conference on Liquid Atomization and Spray Systems (ILASS-Europe 2010), Brno, Sept 2010, pp. 6–8

    Google Scholar 

  10. Gepperth, S., Müller, A., Koch, R., Bauer, H.-J.: Ligament and droplet characteristics in prefilming airblast atomization. In: International Conference on Liquid Atomization and Spray Systems (ICLASS), Heidelberg, Sept 2012, pp. 2–6

    Google Scholar 

  11. Gepperth, S., Koch, R., Bauer, H.-J.: Analysis and comparison of primary droplet characteristics in the near field of a prefilming airblast atomizer. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, pp. V01AT04A002-V01AT04A002. American Society of Mechanical Engineers, New York (2013)

    Google Scholar 

  12. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181 (3), 375–389 (1977)

    Article  MATH  Google Scholar 

  13. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: a call graph execution profiler. ACM Sigplan Not. 17 (6), 120–126. ACM (1982)

    Google Scholar 

  14. Hu, X.Y., Adams, N.A.: An incompressible multi-phase SPH method. J. Comput. Phys. 227 (1), 264–278 (2007)

    Article  MATH  Google Scholar 

  15. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  16. Morris, J.P.: Simulating surface tension with smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids 33, 333–353 (2000)

    Article  MATH  Google Scholar 

  17. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM (JACM) 13 (4), 471–494 (1966)

    Google Scholar 

  18. Szewc, K., Pozorski, J., Minier, J.P.: Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method. Int. J. Numer. Methods Eng. 92 (4), 343–369 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was performed on the computational resource ForHLR Phase I funded by the Ministry of Science, Research and the Arts Baden-Württemberg and DFG (“Deutsche Forschungsgemeinschaft”). We greatly acknowledge the excellent technical support provided by the Steinbuch Centre for Computing (SCC) at the Karlsruhe Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Braun, S., Koch, R., Bauer, HJ. (2016). Smoothed Particle Hydrodynamics for Numerical Predictions of Primary Atomization. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering ´16. Springer, Cham. https://doi.org/10.1007/978-3-319-47066-5_22

Download citation

Publish with us

Policies and ethics