Skip to main content

Modeling of the Deformation Dynamics of Single and Twin Fluid Droplets Exposed to Aerodynamic Loads

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ´16

Abstract

Droplet deformation and breakup plays a significant role in liquid fuel atomization processes. The droplet behavior needs to be understood in detail, in order to derive simplified models for predicting the different processes in combustion chambers. Therefore, the behavior of single droplets at low aerodynamic loads was investigated using the Lagrangian, mesh-free Smoothed Particle Hydrodynamics (SPH) method. The simulations to be presented in this paper are focused on the deformation dynamics of pure liquid droplets and fuel droplets with water added to the inside of the droplet. The simulations have been run at two different relative velocities. As SPH is relatively new to Computational Fluid Dynamics (CFD), the pure liquid droplet simulations are used to verify the SPH code by empirical correlations available in literature. Furthermore, an enhanced characteristic deformation time is proposed, leading to a good description of the temporal initial deformation behavior for all investigated test cases. In the further course, the deformation behavior of two fluid droplets are compared to the corresponding single fluid droplet simulations. The results show an influence of the added water on the deformation history. However, it is found that, the droplet behavior can be characterized by the pure fuel Weber number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Adami, S., Hu, X.Y., Adams, N.A.: A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J. Comput. Phys. 229, 5011–5021 (2010)

    Article  MATH  Google Scholar 

  2. Bartz, F.-O., Schmehl, R., Koch, R., Bauer, H.-J.: An extension of dynamic droplet deformation model to secondary atomization. In: 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno (2010)

    Google Scholar 

  3. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  4. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braun, S., Krug, M., Wieth, L., Höfler, C., Koch, R., Bauer, H.-J.: Simulation of primary atomization: assessment of the smoothed particle hydrodynamics (SPH) method. In: 13th Triennial International Conference on Liquid Atomization and Spray Systems, Tainan (2015)

    Google Scholar 

  6. Braun, S., Wieth, L., Koch, R., Bauer, H.-J.: A framework for permeable boundary conditions in SPH: inlet, outlet, periodicity. In: 10th International SPHERIC Workshop, Parma (2015)

    Google Scholar 

  7. Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448–475 (2003)

    Article  MATH  Google Scholar 

  8. Dryer, F.L.: Water addition to practical combustion systems – concepts and applications. Symp. Int. Combust. 16 (1), 279–295 (1977)

    Article  Google Scholar 

  9. Forschungshochleistungsrechner ForHLR Phase I http://www.bwhpc-c5.de/wiki/index.php/ForHLR_Phase_I_Hardware_and_Architecture. Cited 04 Apr 2016

  10. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics theory and application to non-spherical stars. Mon. Not. R. Aston. Soc. 181, 375–389 (1977)

    Article  MATH  Google Scholar 

  11. Guildenbecher, D.R., López-Rivera, C., Sojka, P.E.: Secondary atomization. Exp. Fluids 46, 371–402 (2009)

    Article  Google Scholar 

  12. Hinze, J.O.: Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1, 289–295 (1955)

    Article  Google Scholar 

  13. Höfler, C., Braun, S., Koch, R., Bauer, H.-J.: Modeling spray formation in gas turbines – a new meshless approach. J. Eng. Gas. Turb. Power 135, 011503-1–011503-8 (2013)

    Google Scholar 

  14. Hsiang, L.-P., Faeth, G.M.: Near-limit drop deformation and secondary breakup. Int. J. Multiph. Flow. 18 (5), 635–652 (1992)

    Article  MATH  Google Scholar 

  15. Hu, X.Y., Adams, N.A.: Angular-momentum conservative smoothed particle dynamics for incompressible viscous flows. Phys. Fluids 18, 101702 (2006)

    Article  Google Scholar 

  16. Hu, X.Y., Adams, N.A.: An incompressible multi-phase SPH method. J. Comput. Phys. 227, 264–278 (2007)

    Article  MATH  Google Scholar 

  17. Khare, P., Ma, D., Chen, X., Yang, D.: Breakup of liquid droplets. In: 12th Triennial International Conference on Liquid Atomization and Spray Systems, Heidelberg (2012)

    Google Scholar 

  18. Lechner, C., Seume, J.: Stationäre Gasturbinen. Springer, Heidelberg (2010)

    Book  Google Scholar 

  19. Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH) an overview and recent developments. Arch. Comput. Method E 17, 25–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  21. Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  22. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)

    Article  MATH  Google Scholar 

  23. Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997)

    Article  MATH  Google Scholar 

  24. O’Rourke, P.J., Amsden, A.A.: The TAB method for numerical calculation of spray droplet breakup. In: International Fuels and Lubricants Meeting and Exposition, Toronto (1987)

    Google Scholar 

  25. Quan, S., Schmidt, D.P.: Direct numerical study of a liquid droplet impulsively accelerated by gaseous flow. Phys. Fluids 18, 102103 (2006)

    Article  Google Scholar 

  26. Ranger, A.A., Nicholls, J.A.: Aerodynamic shattering of liquid drops. AIAA J. 7 (2), 285–289 (1969)

    Article  Google Scholar 

  27. Schmehl, R.: Advanced modeling of droplet deformation and breakup for CFD analysis of mixture preparation. In: 18th Annual Conference on Liquid Atomization and Spray Systems, Zaragoza (2002)

    Google Scholar 

  28. Schmehl, R., Maier, G., Wittig, S.: CFD analysis of fuel atomization, secondary droplet breakup and spray dispersion in the premix duct of a LPP combustor. In: 8th International Conference on Liquid Atomization and Spray Systems, Pasadena (2000)

    Google Scholar 

  29. Wieth, L., Braun, S., Koch, R., Bauer, H.-J.: Modeling of liquid-wall interaction using the meshless Smoothed Particle Hydrodynamics (SPH) method. In: 26th European Conference on Liquid Atomization and Spray Systems, Bremen (2014)

    Google Scholar 

  30. Zaleski, S., Li, J., Succi, S.: Two-dimensional Navier-Stokes simulation of deformation and breakup of liquid patches. Phys. Rev. Lett. 75 (2), 244–247 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the German Federal Ministry of Economics and Technology and Siemens AG within the cooperative research project ‘Entwicklung von Verbrennungstechnologien im CEC für klimaschonende Energieerzeugung (03ET7011E)’ is gratefully acknowledged.

This work was performed on the computational resource ForHLR Phase I, funded by the Ministry of Science, Research and the Arts Baden-Württemberg and DFG (“Deutsche Forschungsgemeinschaft”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Wieth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Wieth, L. et al. (2016). Modeling of the Deformation Dynamics of Single and Twin Fluid Droplets Exposed to Aerodynamic Loads. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering ´16. Springer, Cham. https://doi.org/10.1007/978-3-319-47066-5_21

Download citation

Publish with us

Policies and ethics