Skip to main content

Hydrangea: Simulating a Representative Population of Massive Galaxy Clusters

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ´16

Abstract

Galaxy clusters are the most massive bound structures in the Universe, and contain not only up to several thousand galaxies, but also extended haloes of dark matter and hot gas. Observations show that galaxies in clusters differ from those living in more isolated parts of the Universe, but the physics of how clusters shape their galaxies is at present not well understood. Not only does this constitute a major gap in our understanding of galaxy formation, but it also limits the use of galaxy clusters as cosmological probes. In the Hydrangea project, we have created a suite of 24 simulated galaxy clusters at unprecedented resolution, using a state of the art galaxy formation model developed for the EAGLE project. Detailed scientific analysis of the simulation outputs, which has only just begun, is expected to lead to major new insight into the physics of both galaxy formation in an extreme environment and the growth of the massive haloes in which cluster galaxies are embedded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The parsec (pc) is the standard unit of length in astronomy, with 1 pc = 3. 08 × 1016 m.

  2. 2.

    M 200 is defined as the mass within r 200, the radius inside which the mean density equals 200 times the critical density of the Universe (ρ crit).

  3. 3.

    Abbreviation for “Cluster-EAGLE”, which also refers to the sea eagle (Haliaeetus pelagicus) as the most massive member of the eagle family.

  4. 4.

    During the course of a simulation, some baryon particles are ‘swallowed’ by black holes, so that the final number of baryon particles is typically slightly lower.

  5. 5.

    Given that the age of the Universe is approximately 1010 yr, such galaxies must have formed stars at a much higher rate in the past in order to build up their current stellar mass.

References

  1. Voit, G.M.: Rev. Modern Phys. 77, 207 (2005). doi:10.1103/RevModPhys.77.207

    Article  Google Scholar 

  2. Hogg, D.W., Blanton, M.R., Brinchmann, J., Eisenstein, D.J., Schlegel, D.J., Gunn, J.E., McKay, T.A., Rix, H.W., Bahcall, N.A., Brinkmann, J., Meiksin, A.: ApJ Lett. 601, L29 (2004). doi:10.1086/381749

    Article  Google Scholar 

  3. Gunn, J.E., Gott, J.R., III.: ApJ 176, 1 (1972). doi:10.1086/151605

    Article  Google Scholar 

  4. Larson, R.B., Tinsley, B.M., Caldwell, C.N.: ApJ 237, 692 (1980). doi:10.1086/157917

    Article  Google Scholar 

  5. Merritt, D.: ApJ 264, 24 (1983). doi:10.1086/160571

    Article  Google Scholar 

  6. Moore, B., Lake, G., Quinn, T., Stadel, J.: MNRAS 304, 465 (1999). doi:10.1046/j.1365-8711.1999.02345.x

    Article  Google Scholar 

  7. Wetzel, A.R., Tinker, J.L., Conroy, C., van den Bosch, F.C.: MNRAS (2013, in press). doi:10.1093/mnras/stt469

    Google Scholar 

  8. Bahé, Y.M., McCarthy, I.G.: MNRAS 447, 969 (2015). doi:10.1093/mnras/stu2293

    Article  Google Scholar 

  9. Velliscig, M., van Daalen, M.P., Schaye, J., McCarthy, I.G., Cacciato, M., Le Brun, A.M.C., Dalla Vecchia, C.: MNRAS 442, 2641 (2014). doi:10.1093/mnras/stu1044

    Article  Google Scholar 

  10. Crain, R.A., Theuns, T., Dalla Vecchia, C., Eke, V.R., Frenk, C.S., Jenkins, A., Kay, S.T., Peacock, J.A., Pearce, F.R., Schaye, J., Springel, V., Thomas, P.A., White, S.D.M., Wiersma, R.P.C.: MNRAS 399, 1773 (2009). doi:10.1111/j.1365-2966.2009.15402.x

    Article  Google Scholar 

  11. Bahé, Y.M., McCarthy, I.G., Balogh, M.L., Font, A.S.: MNRAS 430, 3017 (2013). doi:10.1093/mnras/stt109

    Article  Google Scholar 

  12. Schaye, J., Crain, R.A., Bower, R.G., Furlong, M., Schaller, M., Theuns, T., Dalla Vecchia, C., Frenk, C.S., McCarthy, I.G., Helly, J.C., Jenkins, A., Rosas-Guevara, Y.M., White, S.D.M., Baes, M., Booth, C.M., Camps, P., Navarro, J.F., Qu, Y., Rahmati, A., Sawala, T., Thomas, P.A., Trayford, J.: MNRAS 446, 521 (2015). doi:10.1093/mnras/stu2058

    Article  Google Scholar 

  13. Muzzin, A., Wilson, G., Demarco, R., Lidman, C., Nantais, J., Hoekstra, H., Yee, H.K.C., Rettura, A.: ApJ 767, 39 (2013). doi:10.1088/0004-637X/767/1/39

    Article  Google Scholar 

  14. Le Brun, A.M.C., McCarthy, I.G., Schaye, J., Ponman, T.J.: MNRAS 441, 1270 (2014). doi:10.1093/mnras/stu608

    Article  Google Scholar 

  15. McCarthy, I.G., Schaye, J., Bird, S., Le Brun, A.M.C.: ArXiv e-prints (2016)

    Google Scholar 

  16. Katz, N., Quinn, T., Bertschinger, E., Gelb, J.M.: MNRAS 270, L71 (1994)

    Article  Google Scholar 

  17. Springel, V.: MNRAS 364, 1105 (2005). doi:10.1111/j.1365-2966.2005.09655.x

    Article  Google Scholar 

  18. Durier, F., Dalla Vecchia, C.: MNRAS 419, 465 (2012). doi:10.1111/j.1365-2966.2011.19712.x

    Article  Google Scholar 

  19. Schaller, M., Dalla Vecchia, C., Schaye, J., Bower, R.G., Theuns, T., Crain, R.A., Furlong, M., McCarthy, I.G.: MNRAS 454, 2277 (2015). doi:10.1093/mnras/stv2169

    Article  Google Scholar 

  20. Springel, V., Hernquist, L.: MNRAS 333, 649 (2002). doi:10.1046/j.1365-8711.2002.05445.x

    Article  Google Scholar 

  21. Hopkins, P.F.: MNRAS 428, 2840 (2013). doi:10.1093/mnras/sts210

    Article  Google Scholar 

  22. Cullen, L., Dehnen, W.: MNRAS 408, 669 (2010). doi:10.1111/j.1365-2966.2010.17158.x

    Article  Google Scholar 

  23. Price, D.J.: J. Comput. Phys. 227, 10040 (2008). doi:10.1016/j.jcp.2008.08.011

    Article  MathSciNet  Google Scholar 

  24. Wendland, H.: Adv. Comput. Math. 4, 389 (1995)

    Article  MathSciNet  Google Scholar 

  25. Wiersma, R.P.C., Schaye, J., Smith, B.D.: MNRAS 393, 99 (2009). doi:10.1111/j.1365-2966.2008.14191.x

    Article  Google Scholar 

  26. Wiersma, R.P.C., Schaye, J., Theuns, T., Dalla Vecchia, C., Tornatore, L.: MNRAS 399, 574 (2009). doi:10.1111/j.1365-2966.2009.15331.x

    Article  Google Scholar 

  27. Ferland, G.J., Korista, K.T., Verner, D.A., Ferguson, J.W., Kingdon, J.B., Verner, E.M.: PASP 110, 761 (1998). doi:10.1086/316190

    Article  Google Scholar 

  28. Schaye, J.: ApJ 609, 667 (2004). doi:10.1086/421232

    Article  Google Scholar 

  29. Kennicutt, R.C., Jr.: ApJ 498, 541 (1998). doi:10.1086/305588

    Article  Google Scholar 

  30. Schaye, J., Dalla Vecchia, C.: MNRAS 383, 1210 (2008). doi:10.1111/j.1365-2966.2007.12639.x

    Article  Google Scholar 

  31. Dalla Vecchia, C., Schaye, J.: MNRAS 426, 140 (2012). doi:10.1111/j.1365-2966.2012.21704.x

    Article  Google Scholar 

  32. Rosas-Guevara, Y.M., Bower, R.G., Schaye, J., Furlong, M., Frenk, C.S., Booth, C.M., Crain, R.A., Dalla Vecchia, C., Schaller, M., Theuns, T.: MNRAS 454, 1038 (2015). doi:10.1093/mnras/stv2056

    Article  Google Scholar 

  33. Jenkins, A.: MNRAS 403, 1859 (2010). doi:10.1111/j.1365-2966.2010.16259.x

    Article  Google Scholar 

  34. Springel, V., White, S.D.M., Tormen, G., Kauffmann, G.: MNRAS 328, 726 (2001). doi:10.1046/j.1365-8711.2001.04912.x

    Article  Google Scholar 

  35. Yates, R.M., Thomas, P.A., Henriques, B.M.B.: ArXiv e-prints (2016)

    Google Scholar 

  36. Navarro, J.F., Frenk, C.S., White, S.D.M.: ApJ 462, 563 (1996). doi:10.1086/177173

    Article  Google Scholar 

  37. Neto, A.F., Gao, L., Bett, P., Cole, S., Navarro, J.F., Frenk, C.S., White, S.D.M., Springel, V., Jenkins, A.: MNRAS 381, 1450 (2007). doi:10.1111/j.1365-2966.2007.12381.x

    Article  Google Scholar 

  38. Wetzel, A.R., Tinker, J.L., Conroy, C.: MNRAS 424, 232 (2012). doi:10.1111/j.1365-2966.2012.21188.x

    Article  Google Scholar 

  39. Dressler, A.: ApJ 236, 351 (1980). doi:10.1086/157753

    Article  Google Scholar 

  40. Sun, M., Jones, C., Forman, W., Vikhlinin, A., Donahue, M., Voit, M.: ApJ 657, 197 (2007). doi:10.1086/510895

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Consortia

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Yannick M. Bahé, for the C-EAGLE collaboration. (2016). Hydrangea: Simulating a Representative Population of Massive Galaxy Clusters. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering ´16. Springer, Cham. https://doi.org/10.1007/978-3-319-47066-5_2

Download citation

Publish with us

Policies and ethics