Skip to main content

Submonolayer Rare Earth Silicide Thin Films on the Si(111) Surface

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ´16

Abstract

Rare earth induced silicide phases of submonolayer height and 5 × 2 periodicity on the Si(111) surface are investigated by density functional theory and ab initio thermodynamics. The most stable silicide thin film consists of alternating Si Seiwatz and honeycomb chains aligned along the [1\(\overline{1}\) 0] direction, with rare earth atoms in between. This thermodynamically favored model is characterized by a minor band gap reduction compared to bulk Si and explains nicely the measured scanning tunneling microscopy images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    It is also important to notice that the adsorption of divalent metals at the Si(111) typically leads to a n × 2 surface reconstruction, with n an odd integer. Thus, as suggested by Battaglia et al. [11], the 5 × 2 phase might be induced by divalent lanthanides such as Yb, Eu, Sm or Tm. In this case, they would give rise to completely different structures, similar to the reconstructions formed by deposition of divalent alkaline-metal earths (Mg, Ca, Sr, Ba). These are not investigated in this work, as we only consider lanthanides in the trivalent state (Dy3+,Tb3+).

References

  1. Paki, P., Kafader, U., Wetzel, P., Pirri, C., Peruchetti, J.C., Bolmont, D., Gewinner, G.: Phys. Rev. B 45, 8490 (1992)

    Article  Google Scholar 

  2. d’Avitaya, F.A., Perio, A., Oberlin, J.C., Campidelli, Y., Chroboczek, J.A.: Appl. Phys. Lett. 54 (22), 2198 (1989)

    Article  Google Scholar 

  3. Knapp, J.A., Picraux, S.T.: Appl. Phys. Lett. 48 (7), 466 (1986)

    Article  Google Scholar 

  4. Wetzel, P., Pirri, C., Paki, P., Peruchetti, J., Bolmont, D., Gewinner, G.: Solid State Commun. 82 (4), 235 (1992)

    Article  Google Scholar 

  5. Tu, K.N., Thompson, R.D., Tsaur, B.Y.: Appl. Phys. Lett. 38 (8), 626 (1981)

    Article  Google Scholar 

  6. Vandré, S., Preinesberger, C., Busse, W., Dähne, M.: Appl. Phys. Lett. 78 (14), 2012 (2001)

    Article  Google Scholar 

  7. Vandré, S., Kalka, T., Preinesberger, C., Dähne-Prietsch, M.: Phys. Rev. Lett. 82, 1927 (1999)

    Article  Google Scholar 

  8. Lohmeier, M., Huisman, W.J., ter Horst, G., Zagwijn, P.M., Vlieg, E., Nicklin, C.L., Turner, T.S.: Phys. Rev. B 54, 2004 (1996)

    Article  Google Scholar 

  9. Roge, T., Palmino, F., Savall, C., Labrune, J., Pirri, C.: Surf. Sci. 383 (2–3), 350 (1997)

    Article  Google Scholar 

  10. Engelhardt, I., Preinesberger, C., Becker, S., Eisele, H., Dähne, M.: Surf. Sci. 600 (3), 755 (2006)

    Article  Google Scholar 

  11. Battaglia, C., Cercellier, H., Monney, C., Garnier, M.G., Aebi, P.: EPL (Europhys. Lett.) 77 (3), 36003 (2007)

    Google Scholar 

  12. Franz, M., Große, J., Kohlhaas, R., Dähne, M.: Surf. Sci. 637–638, 149 (2015)

    Article  Google Scholar 

  13. Wanke, M., Franz, M., Vetterlein, M., Pruskil, G., Höpfner, B., Prohl, C., Engelhardt, I., Stojanov, P., Huwald, E., Riley, J., Dähne, M.: Surf. Sci. 603 (17), 2808 (2009)

    Article  Google Scholar 

  14. Wanke, M., Franz, M., Vetterlein, M., Pruskil, G., Prohl, C., Höpfner, B., Stojanov, P., Huwald, E., Riley, J.D., Dähne, M.: J. Appl. Phys. 108 (6), 064304 (2010)

    Article  Google Scholar 

  15. Stauffer, L., Mharchi, A., Pirri, C., Wetzel, P., Bolmont, D., Gewinner, G., Minot, C.: Phys. Rev. B 47, 10555 (1993)

    Article  Google Scholar 

  16. Kitayama, H., Tear, S., Spence, D., Urano, T.: Surf. Sci. 482–485 (Part 2), 1481 (2001)

    Google Scholar 

  17. Bonet, C., Spence, D., Tear, S.: Surf. Sci. 504, 183 (2002)

    Article  Google Scholar 

  18. Rogero, C., Koitzsch, C., González, M.E., Aebi, P., Cerdá, J., Martín-Gago, J.A.: Phys. Rev. B 69, 045312 (2004)

    Article  Google Scholar 

  19. Rogero, C., Martín-Gago, J.A., Cerdá, J.I.: Phys. Rev. B 74, 121404 (2006)

    Article  Google Scholar 

  20. Koitzsch, C., Bovet, M., Garnier, M., Aebi, P., Rogero, C., Martín-Gago, J.: Surf. Sci. 566–568 (Part 2), 1047 (2004) (Proceedings of the 22nd European Conference on Surface Science)

    Google Scholar 

  21. Magaud, L., Reinisch, G., Pasturel, A., Mallet, P., E. Dupont-Ferrier, Veuillen, J.Y.: EPL (Europhys. Lett.) 69 (5), 784 (2005)

    Google Scholar 

  22. Wetzel, P., Saintenoy, S., Pirri, C., Bolmont, D., Gewinner, G.: Phys. Rev. B 50, 10886 (1994)

    Article  Google Scholar 

  23. Cocoletzi, G.H., de la Cruz, M.R., Takeuchi, N.: Surf. Sci. 602 (2), 644 (2008)

    Article  Google Scholar 

  24. Perdew, P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Phys. Rev. B 46, 6671 (1992)

    Article  Google Scholar 

  25. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  26. Kresse, G., Furthmüller, J.: Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  27. Kresse, G., Furthmüller, J.: Phys. Rev. B 54, 11169 (1996)

    Article  Google Scholar 

  28. Bloechl, P.E.: Phys. Rev. B 50 (24), 17953 (1994)

    Article  Google Scholar 

  29. Kresse, G., Joubert, D.: Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  30. Anisimov, V.I., Aryasetiawan, F., Lichtenstein, A.I.: J. Phys. Condensed Matter 9 (4), 767 (1999)

    Article  Google Scholar 

  31. Sanna, S., Schmidt, W.G., Frauenheim, T., Gerstmann, U.: Phys. Rev. B 80, 104120 (2009)

    Article  Google Scholar 

  32. Sanna, S., Frauenheim, T., Gerstmann, U.: Phys. Rev. B 78, 085201 (2008)

    Article  Google Scholar 

  33. Neugebauer, J., Scheffler, M.: Phys. Rev. B 46 (24), 16067 (1992)

    Article  Google Scholar 

  34. Bengtsson, L.: Phys. Rev. B 59 (19), 12301 (1999)

    Article  Google Scholar 

  35. Tersoff, J., Hamann, D.R.: Phys. Rev. Lett. 50, 1998 (1983)

    Article  Google Scholar 

  36. Tersoff, J., Hamann, D.R.: Phys. Rev. B 31, 805 (1985)

    Article  Google Scholar 

  37. Bechstedt, F.: Principles of Surface Physics. Advanced Texts in Physics. Springer, Berlin/ Heidelberg (2003)

    Google Scholar 

  38. Sanna, S., Schmidt, W.G.: Phys. Rev. B 81 (21), 214116 (2010)

    Article  Google Scholar 

  39. Lüth, c: Surfaces and Interfaces of Solid Materials. Springer Study Edition. Springer, Berlin/Heidelberg (1995)

    Google Scholar 

  40. Kirakosian, A., McChesney, J., Bennewitz, R., Crain, J., Lin, J.L., Himpsel, F.: Surf. Sci. 498 (3), L109 (2002)

    Article  Google Scholar 

  41. Perkins, E., Scott, I., Tear, S.: Surf. Sci. 578 (1–3), 80 (2005)

    Article  Google Scholar 

  42. Wetzel, P., Pirri, C., Gewinner, G., Pelletier, S., Roge, P., Palmino, F., Labrune, J.C.: Phys. Rev. B 56, 9819 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The Deutsche Forschungsgemeinschaft (DFG) is acknowledged for financial support (FOR1700, SCHM 1361/21). The calculations were performed at the High Performance Computing Center Stuttgart (HLRS) and the Paderborn Center for Parallel Computing (PC2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Sanna, S. et al. (2016). Submonolayer Rare Earth Silicide Thin Films on the Si(111) Surface. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering ´16. Springer, Cham. https://doi.org/10.1007/978-3-319-47066-5_12

Download citation

Publish with us

Policies and ethics