Skip to main content

The Illustris++ Project: The Next Generation of Cosmological Hydrodynamical Simulations of Galaxy Formation

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ´16

Abstract

Cosmological simulations of galaxy formation provide the most powerful technique for calculating the non-linear evolution of cosmic structure formation. This approach starts from initial conditions determined during the Big Bang – which are precisely specified in the cosmological standard model – and evolves them forward in time to the present epoch, thereby providing detailed predictions that test the cosmological paradigm. Here we report first preliminary results from a new generation of hydrodynamical simulations that excel with new physics, enlarged dynamic range and more accurate numerical techniques. The simulations of our ongoing Illustris++ project on HazelHen successfully reproduce the appearance of a red sequence of galaxies that are quenched by accreting supermassive black holes, while at the same time yielding a population of disk galaxies with properties that closely match observational data. Also, we are able to predict the amplification of magnetic fields through small-scale dynamo processes in realistic simulations of large galaxy populations, thereby providing novel predictions for the field strength and topology expected for galaxies of different size and type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Springel, V., White, S.D.M., Jenkins, A., Frenk, C.S., Yoshida, N., Gao, L., Navarro, J., Thacker, R., Croton, D., Helly, J., Peacock, J.A., Cole, S., Thomas, P., Couchman, H., Evrard, A., Colberg, J., Pearce, F.: Nature 435, 629 (2005). doi:10.1038/nature03597

    Article  Google Scholar 

  2. Boylan-Kolchin, M., Springel, V., White, S.D.M., Jenkins, A., Lemson, G.: MNRAS 398, 1150 (2009). doi:10.1111/j.1365-2966.2009.15191.x

    Article  Google Scholar 

  3. Angulo, R.E., Springel, V., White, S.D.M., Jenkins, A., Baugh, C.M., Frenk, C.S.: MNRAS 426, 2046 (2012). doi:10.1111/j.1365-2966.2012.21830.x

    Article  Google Scholar 

  4. Kauffmann, G., Colberg, J.M., Diaferio, A., White, S.D.M.: MNRAS 303, 188 (1999). doi:10.1046/j.1365-8711.1999.02202.x

    Article  Google Scholar 

  5. Cole, S., Lacey, C.G., Baugh, C.M., Frenk, C.S.: MNRAS 319, 168 (2000). doi:10.1046/j.1365-8711.2000.03879.x

    Article  Google Scholar 

  6. Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., Snyder, G., Bird, S., Nelson, D., Hernquist, L.: Nature 509, 177 (2014). doi:10.1038/nature13316

    Article  Google Scholar 

  7. Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., Snyder, G., Nelson, D., Hernquist, L.: MNRAS 444, 1518 (2014). doi:10.1093/mnras/stu1536

    Article  Google Scholar 

  8. Genel, S., Vogelsberger, M., Springel, V., Sijacki, D., Nelson, D., Snyder, G., Rodriguez-Gomez, V., Torrey, P., Hernquist, L.: MNRAS 445, 175 (2014). doi:10.1093/mnras/stu1654

    Article  Google Scholar 

  9. Springel, V.: MNRAS 401, 791 (2010). doi:10.1111/j.1365-2966.2009.15715.x

    Article  Google Scholar 

  10. Vogelsberger, M., Sijacki, D., Kereš, D., Springel, V., Hernquist, L.: MNRAS 425, 3024 (2012). doi:10.1111/j.1365-2966.2012.21590.x

    Article  Google Scholar 

  11. Sijacki, D., Vogelsberger, M., Kereš, D., Springel, V., Hernquist, L.: MNRAS 424, 2999 (2012). doi:10.1111/j.1365-2966.2012.21466.x

    Article  Google Scholar 

  12. Torrey, P., Vogelsberger, M., Sijacki, D., Springel, V., Hernquist, L.: MNRAS 427, 2224 (2012). doi:10.1111/j.1365-2966.2012.22082.x

    Article  Google Scholar 

  13. Bauer, A., Springel, V.: MNRAS 423, 2558 (2012). doi:10.1111/j.1365-2966.2012.21058.x

    Article  Google Scholar 

  14. Sijacki, D., Springel, V., Di Matteo, T., Hernquist, L.: MNRAS 380, 877 (2007). doi:10.1111/j.1365-2966.2007.12153.x

    Article  Google Scholar 

  15. Dolag, K., Bartelmann, M., Lesch, M.: A&A 348, 351 (1999)

    Google Scholar 

  16. Dolag, K., Bartelmann, M., Lesch, H.: A&A 387, 383 (2002). doi:10.1051/0004-6361:20020241

    Article  Google Scholar 

  17. Dolag, K., Grasso, D., Springel, V., Tkachev, I.: J. Cosmol. Astropart. Phys. 1, 009 (2005). doi:10.1088/1475-7516/2005/01/009

    Article  Google Scholar 

  18. Donnert, J., Dolag, K., Lesch, H., Müller, E.: MNRAS 392, 1008 (2009). doi:10.1111/j.1365-2966.2008.14132.x

    Article  Google Scholar 

  19. Bonafede, A., Dolag, K., Stasyszyn, F., Murante, G., Borgani, S.: MNRAS 418, 2234 (2011). doi:10.1111/j.1365-2966.2011.19523.x

    Article  Google Scholar 

  20. Kotarba, H., Lesch, H., Dolag, K., Naab, T., Johansson, P.H., Donnert, J., Stasyszyn, F.A.: MNRAS 415, 3189 (2011). doi:10.1111/j.1365-2966.2011.18932.x

    Article  Google Scholar 

  21. Beck, A.M., Lesch, H., Dolag, K., Kotarba, H., Geng, A., Stasyszyn, F.A.: MNRAS 422, 2152 (2012). doi:10.1111/j.1365-2966.2012.20759.x

    Article  Google Scholar 

  22. Marinacci, F., Vogelsberger, M., Mocz, P., Pakmor, R.: MNRAS 453, 3999 (2015). doi:10.1093/mnras/stv1692

    Article  Google Scholar 

  23. Sijacki, D., Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Snyder, G.F., Nelson, D., Hernquist, L.: MNRAS 452, 575 (2015). doi:10.1093/mnras/stv1340

    Article  Google Scholar 

  24. Yuan, F., Narayan, R.: ARA&A 52, 529 (2014). doi:10.1146/annurev-astro-082812-141003

    Article  Google Scholar 

  25. Weinberger, R., Springel, V., Hernquist, L., Pillepich, A., Marinacci, F., Pakmor, R., Nelson, D., Genel, S., Vogelsberger, M., Naiman, J., Torrey, P.: ArXiv e-prints (2016)

    Google Scholar 

  26. Pelupessy, F.I., Jänes, J., Portegies Zwart, S.: New A 17, 711 (2012). doi:10.1016/j.newast.2012.05.009

    Article  Google Scholar 

  27. Pakmor, R., Springel, V., Bauer, A., Mocz, P., Munoz, D.J., Ohlmann, S.T., Schaal, K., Zhu, C.: MNRAS 455, 1134 (2016). doi:10.1093/mnras/stv2380

    Article  Google Scholar 

  28. Pakmor, R., Bauer, A., Springel, V.: MNRAS 418, 1392 (2011). doi:10.1111/j.1365-2966.2011.19591.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge computer time through the project GCS-ILLU on Hornet/HazelHen at HLRS. We acknowledge financial support through subproject EXAMAG of the Priority Programme 1648 ‘SPPEXA’ of the German Science Foundation, and through the European Research Council through ERC-StG grant EXAGAL-308037, and we would like to thank the Klaus Tschira Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Springel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Springel, V. et al. (2016). The Illustris++ Project: The Next Generation of Cosmological Hydrodynamical Simulations of Galaxy Formation. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering ´16. Springer, Cham. https://doi.org/10.1007/978-3-319-47066-5_1

Download citation

Publish with us

Policies and ethics