Skip to main content

Fast \((1+\epsilon )\)-Approximation of the Löwner Extremal Matrices of High-Dimensional Symmetric Matrices

  • Chapter
  • First Online:
Computational Information Geometry

Part of the book series: Signals and Communication Technology ((SCT))

  • 1727 Accesses

Abstract

Matrix data sets are common nowadays like in biomedical imaging where the Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) modality produces data sets of 3D symmetric positive definite matrices anchored at voxel positions capturing the anisotropic diffusion properties of water molecules in biological tissues. The space of symmetric matrices can be partially ordered using the Löwner ordering, and computing extremal matrices dominating a given set of matrices is a basic primitive used in matrix-valued signal processing. In this letter, we design a fast and easy-to-implement iterative algorithm to approximate arbitrarily finely these extremal matrices. Finally, we discuss on extensions to matrix clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although addition preserves the symmetric property, beware that the product of two symmetric matrices may be not symmetric.

  2. 2.

    Those definitions extend to Hermitian matrices \(M_d(\mathbb {C})\).

  3. 3.

    Also often written Loewner in the literature, e.g., see Siotani (1967).

  4. 4.

    For example, consider \(P=\mathrm {diag}(1,2)\) and \(Q=\mathrm {diag}(2,1)\) then \(P-Q=\mathrm {diag}(-1,1)\) and \(Q-P=\mathrm {diag}(1,-1)\).

  5. 5.

    For example, \(S=\mathrm {diag}(-1,1)\) is dominated by \(P=\mathrm {diag}(1=|-1|,1)\) (by taking the absolute values of the eigenvalues of S).

  6. 6.

    In 2D, we sample \(v=[\cos \theta , \sin \theta ]^\top \) for \(\theta \in [0,2\pi [\). In 3D, we use spherical coordinates \(v=[\sin \theta \cos \phi , \sin \theta \sin \phi , \cos \theta ]^\top \) for \(\theta \in [0,2\pi [\) and \(\phi \in [0,\pi [\).

  7. 7.

    https://www.youtube.com/watch?v=w1ULgGAK6vc.

References

  • Allamigeon, X., Gaubert, S., Goubault, E., Putot, S., & Stott, N. (1980). A scalable algebraic method to infer quadratic invariants of switched systems. In 2015 International Conference on Embedded Software (EMSOFT) (pp. 75–84), October 2015.

    Google Scholar 

  • Angulo, J. (2013). Matrix Information Geometry. In F. Nielsen & R. Bhatia (Eds.), Supremum/infimum and nonlinear averaging of positive definite symmetric matrices (pp. 3–33). Heidelberg: Springer.

    Google Scholar 

  • Bădoiu, M., & Clarkson, K. L. (2003). Smaller core-sets for balls. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03, Philadelphia, PA, USA, 2003 (pp 801–802). Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Bădoiu, M., & Clarkson, K. L. (2008). Optimal core-sets for balls. Computational Geometry, 40(1), 14–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhatia, R. (2009). Positive definite matrices. Princeton: Princeton university press.

    Book  MATH  Google Scholar 

  • Boissonnat, J.-D., Cérézo, A., Devillers, O., Duquesne, J., & Yvinec, M. (1996). An algorithm for constructing the convex hull of a set of spheres in dimension \(d\). Computational Geometry, 6(2), 123–130.

    Article  MathSciNet  MATH  Google Scholar 

  • Boissonnat, J.-D., & Karavelas, M. I. (2003). On the combinatorial complexity of euclidean Voronoi cells and convex hulls of \(d\)-dimensional spheres. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 305–312). Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Burgeth, B., Bruhn, A., Didas, S., Weickert, J., & Welk, M. (2007). Morphology for matrix data: Ordering versus PDE-based approach. Image and Vision Computing, 25(4), 496–511.

    Article  Google Scholar 

  • Burgeth, B., Bruhn, A., Papenberg, N., Welk, M., & Weickert, J. (2007). Mathematical morphology for matrix fields induced by the Loewner ordering in higher dimensions. Signal Processing, 87, 277–290.

    Article  MATH  Google Scholar 

  • Calvin, J. A., & Dykstra, R. L. (1991). Maximum likelihood estimation of a set of covariance matrices under Löwner order restrictions with applications to balanced multivariate variance components models. The Annals of Statistics, 19, 850–869.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, K. (2009). On coresets for \(k\)-median and \(k\)-means clustering in metric and euclidean spaces and their applications. SIAM Journal on Computing, 39(3), 923–947.

    Article  MathSciNet  MATH  Google Scholar 

  • Fischer, K., & Gärtner, B. (2004). The smallest enclosing ball of balls: Combinatorial structure and algorithms. International Journal of Computational Geometry & Applications, 14(04n05), 341–378.

    Article  MathSciNet  MATH  Google Scholar 

  • Fischer, K., Gärtner, B., & Kutz, M. (2003). Fast smallest-enclosing-ball computation in high dimensions. In G. Di Battista & U. Zwick (Eds.), Algorithms-ESA 2003 (pp. 630–641). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Förstner, W. (1986). A feature based correspondence algorithm for image matching. International Archives of Photogrammetry and Remote Sensing, 26(3), 150–166.

    Google Scholar 

  • Hill, R. D., & Waters, S. R. (1987). On the cone of positive semidefinite matrices. Linear Algebra and its Applications, 90, 81–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Jambawalikar, S., & Kumar, P. (2008). A note on approximate minimum volume enclosing ellipsoid of ellipsoids. In International Conference on Computational Sciences and Its Applications, 2008. ICCSA’08 (pp. 478–487). IEEE.

    Google Scholar 

  • Kumar, P., Mitchell, J. S. B., & Yildirim, E. A. (2003). Approximate minimum enclosing balls in high dimensions using core-sets. Journal of Experimental Algorithmics (JEA), 8, Article No. 1.1.

    Google Scholar 

  • Mihelic, J., & Robic, B. (2003). Approximation algorithms for the \(k\)-center problem: An experimental evaluation. In Selected papers of the International Conference on Operations Research (SOR 2002) (p. 371) Heidelberg:Springer.

    Google Scholar 

  • Nielsen, F., & Bhatia, R. (2013). Matrix Information Geometry. Heidelberg: Springer Publishing Company, Incorporated.

    Book  MATH  Google Scholar 

  • Siotani, M. (1967). Some applications of Loewner’s ordering on symmetric matrices. Annals of the Institute of Statistical Mathematics, 19(1), 245–259.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsai, M.-T. (2007). Maximum likelihood estimation of Wishart mean matrices under Löwner order restrictions. Journal of Multivariate Analysis, 98(5), 932–944.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was carried out during the Matrix Information Geometry (MIG) workshop (Nielsen and Bhatia 2013), organized at École Polytechnique, France in February 2011 (https://www.sonycsl.co.jp/person/nielsen/infogeo/MIG/). Frank Nielsen dedicates this work to the memory of his late father Gudmund Liebach Nielsen who passed away during the last day of the workshop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nielsen, F., Nock, R. (2017). Fast \((1+\epsilon )\)-Approximation of the Löwner Extremal Matrices of High-Dimensional Symmetric Matrices. In: Nielsen, F., Critchley, F., Dodson, C. (eds) Computational Information Geometry. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47058-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47058-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47056-6

  • Online ISBN: 978-3-319-47058-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics