Skip to main content

Scrutinizing the Endohedral Space: Superatom States and Molecular Machines

  • Chapter
  • First Online:
Endohedral Fullerenes: Electron Transfer and Spin

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In this chapter, we discuss two topics concerning the inner space of hollow molecules such as fullerenes, nanotubes, and even potentially materials like metal-organic frameworks. The first topic describes the special properties of electronic states, whose orbitals are not bound to specific atoms, but rather confined to vacuum region within the hollow molecules or materials. The second topic describes the dynamics of endohedral clusters within hollow molecules, whose motion can be manipulated by inelastic electron scattering , in order to realize a single-molecule switch .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952

    Google Scholar 

  2. Tautz FS (2007) Structure and bonding of large aromatic molecules on noble metal surfaces: the example of PTCDA. Prog Surf Sci 82:479–520

    Article  Google Scholar 

  3. Gunnarsson O (1997) Superconductivity in fullerides. Rev Mod Phys 69:575–606

    Article  Google Scholar 

  4. Feng M, Zhao J, Petek H (2008) Atomlike, hollow-core-bound molecular orbitals of C60. Science 320:359–362

    Article  Google Scholar 

  5. Zhao J, Feng M, Yang JL, Petek H (2009) The Superatom states of fullerenes and their hybridization into the nearly free electron bands of fullerites. ACS Nano 3:853–864

    Article  Google Scholar 

  6. Feng M, Zhao J, Huang T, Zhu X, Petek H (2011) The electronic properties of superatom states of hollow molecules. Acc Chem Res 44:360–368

    Article  Google Scholar 

  7. Echenique PM, Pendry JB (1978) The existence and detection of Rydberg states at surface. J Phys C: Solid State Phys 11:2065

    Article  Google Scholar 

  8. Inkson JC (1971) The electron-electron interaction near an interface. Surf Sci 28:69–76

    Article  Google Scholar 

  9. Inkson JC (1973) The effective exchange and correlation potential for metal surface. J Phys F: Met Phys 3:2143

    Article  Google Scholar 

  10. Horowitz CM, Proetto CR, Pitarke JM (2010) Localized versus extended systems in density functional theory: some lessons from the Kohn-Sham exact exchange potential. Phys Rev B 81:121106

    Article  Google Scholar 

  11. Bisio F, Nývlt M, Franta J, Petek H, Kirschner J (2006) Mechanisms of high-order perturbative photoemission from Cu(001). Phys Rev Lett 96:087601

    Article  Google Scholar 

  12. Silkin VM, Zhao J, Guinea F, Chulkov EV, Echenique PM, Petek H (2009) Image potential states in graphene. Phys Rev B 80:121404–121408

    Article  Google Scholar 

  13. Hu S, Zhao J, Jin Y, Yang J, Petek H, Hou JG (2010) Nearly free electron superatom states of carbon and boron nitride nanotubes. Nano Lett 10:4830–4838

    Article  Google Scholar 

  14. Zhao J, Feng M, Yang J, Petek H (2009) The superatom states of fullerenes and their hybridization into the nearly free electron bands of fullerites. ACS Nano 3:853–864

    Article  Google Scholar 

  15. Hoffmann R (1988) A chemical and theoretical way to look at bonding on surfaces. Rev Mod Phys 60:601–628

    Article  Google Scholar 

  16. Chulkov EV, Silkin VM, Echenique PM (1999) Image potential states on metal surfaces: binding energies and wave functions. Surf Sci 437:330–352

    Article  Google Scholar 

  17. Bose S, Silkin VM, Ohmann R, Brihuega I, Vitali L, Michaelis CH, Mallet P, Veuillen JY, Schneider MA, Chulkov EV, Echenique PM, Kern K (2010) Image potential states as a quantum probe of graphene interfaces. New J Phys 12:023028

    Article  Google Scholar 

  18. Strocov VN, Blaha P, Starnberg HI, Rohlfing M, Claessen R, Debever JM, Themlin JM (2000) Three-dimensional unoccupied band structure of graphite: very-low-energy electron diffraction and band calculations. Phys Rev B 61:4994–5001

    Article  Google Scholar 

  19. Posternak M, Baldereschi A, Freeman AJ, Wimmer E, Weinert M (1983) Prediction of electronic interlayer states in graphite and reinterpretation of alkali bands in graphite intercalation compounds. Phys Rev Lett 50:761–764

    Article  Google Scholar 

  20. Holzwarth NAW, Louie SG, Rabii S (1982) X-ray form factors and the electronic structure of graphite. Phys Rev B 26:5382–5390

    Article  Google Scholar 

  21. Fauster T, Himpsel FJ, Fischer JE, Plummer EW (1983) Three-dimensional energy band in graphite and lithium-intercalated graphite. Phys Rev Lett 51:430–433

    Article  Google Scholar 

  22. Brus L (2014) Size, dimensionality, and strong electron correlation in nanoscience. Acc Chem Res 47:2951–2959

    Article  Google Scholar 

  23. Lv R, Robinson JA, Schaak RE, Sun D, Sun Y, Mallouk TE, Terrones M (2015) Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc Chem Res 48:56–64

    Article  Google Scholar 

  24. Fauster T, Himpsel FJ, Fischer JE, Plummer EW (1983) Three-dimensional energy band in graphite and lithium-intercalated graphite. Phys Rev Lett 51:430–433

    Article  Google Scholar 

  25. Kinoshita I, Ino D, Nagata K, Watanabe K, Takagi N, Matsumoto Y (2002) Anomalous quenching of electronic states of nanographene on Pt(111) by deuterium edge termination. Phys Rev B 65:241402(R)

    Article  Google Scholar 

  26. Lehmann J, Merschdorf M, Thon A, Voll S, Pfeiffer W (1999) Properties and dynamics of the image potential states on graphite investigated by multiphoton photoemission spectroscopy. Phys Rev B 60:17037–17045

    Article  Google Scholar 

  27. Takahashi K, Azuma J, Kamada M (2012) Two-dimensional band dispersion and momentum-resolved lifetime of the image-potential state on graphite studied by angle-resolved multiphoton photoemission spectroscopy. Phys Rev B 85:075325

    Article  Google Scholar 

  28. Tan S, Argondizzo A, Wang C, Cui X, Petek H (2017) Ultrafast multiphoton thermionic photoemission from graphite. Phys Rev X 7: 011004

    Google Scholar 

  29. Csányi G, Littlewood PB, Nevidomskyy AH, Pickard CJ, Simons BD (2005) The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds. Nat Phys 1:42–45

    Article  Google Scholar 

  30. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63

    Article  Google Scholar 

  31. Hu SL, Zhao J, Jin YD, Yang JL, Petek H, Hou JG (2010) Nearly free electron superatom states of carbon and boron nitride nanotubes. Nano Lett 10:4830–4838

    Article  Google Scholar 

  32. Blase X, Rubio A, Louie SG, Cohen ML (1995) Quasi-particle band-structure of bulk hexagonal boron-nitride and related systems. Phys Rev B 51:6868–6875

    Article  Google Scholar 

  33. Margine ER, Crespi VH (2006) Universal behavior of nearly free electron states in carbon nanotubes. Phys Rev Lett 96:196803–196804

    Article  Google Scholar 

  34. Martins JL, Troullier N, Weaver JH (1991) Analysis of occupied and empty electronic states of C60. Chem Phys Lett 180:457–460

    Article  Google Scholar 

  35. Yannouleas C, Landman U (1994) Stabilized-jellium description of neutral and multiply charged fullerenes C 60 . Chem Phys Lett 217:175–185

    Article  Google Scholar 

  36. Lu XH, Grobis M, Khoo KH, Louie SG, Crommie MF (2004) Charge transfer and screening in individual C60 molecules on metal substrates: a scanning tunneling spectroscopy and theoretical study. Phys Rev B 70:115418

    Article  Google Scholar 

  37. Menech DD, Saalmann U, Garcia ME (2006) Energy-resolved STM mapping of C60 on metal surfaces: a theoretical study. Phys Rev B 155407

    Google Scholar 

  38. Fernandez-Torrente I, Franke KJ, Pascual JI (2008) Spectroscopy of C60 single molecules: the role of screening on energy level alignment. J Phys: Condens Matter 20:184002–184011

    Google Scholar 

  39. Hashizume T, Motai K, Wang XD, Shinohara H, Saito Y, Maruyama Y, Ohno K, Kawazoe Y, Nishina Y, Pickering HW, Kuk Y, Sakurai T (1993) Intramolecular structures of C60 molecules adsorbed on the Cu(111)-(1x1) surface. Phys Rev Lett 71:2959–2962

    Article  Google Scholar 

  40. Hou JG, Yang JL, Wang H, Li Q, Zeng CG, Lin H, Wang B, Chen DM, Zhu Q (1999) Identifying molecular orientation of individual C60 on a Si(111)-(7x7) surface. Phys Rev Lett 83:3001–3004

    Article  Google Scholar 

  41. Martins JL, Troullier N, Weaver JH (1991) Analysis of occupied and empty electronic stats of C60. Chem Phys Lett 180:457–460

    Article  Google Scholar 

  42. Pavlyukh Y, Berakadar J (2009) Angular electronic “band structure” of molecules. Chem Phys Lett 468:313–318

    Article  Google Scholar 

  43. Voora VK, Cederbaum LS, Jordan KD (2013) Existence of a correlation bound s-type anion state of C60. J Phys Chem Lett 4:849–853

    Article  Google Scholar 

  44. Voora VK, Jordan KD (2014) Nonvalence correlation-bound anion states of spherical fullerenes. Nano Lett 14:4602–4606

    Article  Google Scholar 

  45. Klaiman S, Gromov EV, Cederbaum LS (2013) Extreme correlation effects in the elusive bound spectrum of C60. J Phys Chem Lett 4:3319–3324

    Article  Google Scholar 

  46. Dougherty DB, Feng M, Petek H, Yates JT, Zhao J (2012) Band formation in a molecular quantum well via 2D superatom orbital interactions. Phys Rev Lett 109:266802

    Article  Google Scholar 

  47. Ueba T, Terawaki R, Morikawa T, Kitagawa Y, Okumura M, Yamada T, Kato HS, Munakata T (2013) Diffuse unoccupied molecular orbital of rubrene causing image-potential state mediated excitation. J Phys Chem C 117:20098–20103

    Article  Google Scholar 

  48. Zoppi L, Martin-Samos L, Baldridge KK (2015) Buckybowl superatom states: a unique route for electron transport? Phys Chem Chem Phys 17:6114–6121

    Article  Google Scholar 

  49. Feng M, Lee J, Zhao J, Yates JT, Petek H (2007) Nanoscale templating of close-packed C60 nanowires. J Am Chem Soc 129:12394–12395

    Article  Google Scholar 

  50. Huang T, Zhao J, Feng M, Petek H, Yang SF, Dunsch L (2010) Superatom orbitals of Sc3N@C80 and their intermolecular hybridization on Cu(110)-(2 x 1)-O surface. Phys Rev B 81:085434

    Article  Google Scholar 

  51. Feng M, Lee J, Zhao J, Yates JT, Petek H (2007) Nanoscale templating of close- packed C60 nanowires. J Am Chem Soc 129:12394–12395

    Article  Google Scholar 

  52. Zhu XY, Dutton G, Quinn DP, Lindstrom CD, Schultz NE, Truhlar DG (2006) Molecular quantum well at the C60/Au(111) interface. Phys Rev B 74:241401

    Article  Google Scholar 

  53. Shipman ST, Garrett-Roe S, Szymanski P, Yang A, Strader ML, Harris CB (2006) Determination of band curvatures by angle-resolved two-photon photoemission in thin films of C60 on Ag(111). J Phys Chem B 110:10002–10010

    Article  Google Scholar 

  54. Dutton G, Zhu XY (2001) Electronic band formation at organic-metal interfaces: role of adsorbate-surface interaction. J Phys Chem B 105:10912–10917

    Article  Google Scholar 

  55. Dutton G, Zhu XY (2002) Unoccupied states in C60 thin films probed by two-photon photoemission. J Phys Chem B 106:5975–5981

    Article  Google Scholar 

  56. Dutton G, Zhu XY (2004) Distance-dependent electronic coupling at molecule-metal interfaces: C60/Cu(111). J Phys Chem B 108:7788–7793

    Article  Google Scholar 

  57. Chan W, Tritsch J, Dolocan A, Ligges M, Miaja-Avila L, Zhu X (2011) Communication: momentum-resolved quantum interference in optically excited surface states. J Chem Phys 135:031101–031104

    Article  Google Scholar 

  58. Zamkov M, Woody N, Bing S, Chakraborty HS, Chang Z, Thumm U, Richard P (2004) Time-resolved photoimaging of image-potential states in carbon nanotubes. Phys Rev Lett 93:156803

    Article  Google Scholar 

  59. Wang KD, Zhao J, Yang SF, Chen L, Li QX, Wang B, Yang SH, Yang JL, Hou JG, Zhu QS (2003) Unveiling metal-cage hybrid states in a single endohedral metallofullerene. Phys Rev Lett 91:185504

    Article  Google Scholar 

  60. Shinohara H (2000) Endohedral metallofullerenes. Rep Prog Phys 63:843–892

    Article  Google Scholar 

  61. Nagase S, Kobayashi K, Kato T, Achiba Y (1993) A theoretical approach to C82 to La@C82. Chem Phys Lett 201:475–480

    Article  Google Scholar 

  62. Laasonen K, Andreoni W, Parrinello M (1992) Structural and electronic-properties of La@C82. Science 258:1916–1918

    Article  Google Scholar 

  63. Poirier DM, Knupfer M, Weaver JH, Andreoni W, Laasonen K, Parrinello M, Bethune DS, Kikuchi K, Achiba Y (1994) Electronic and geometric structure of La@C82 and C82: theory and experiment. Phys Rev B 49:17403–17412

    Article  Google Scholar 

  64. Hino S, Takahashi H, Iwasaki K, Matsumoto K, Miyazaki T, Hasegawa S, Kikuchi K, Achiba Y (1993) Electronic-structure of metallofullerene LaC82 - electron transfer from lanthanum to C82. Phys Rev Lett 71:4261–4263

    Article  Google Scholar 

  65. Kessler B, Bringer A, Cramm S, Schlebusch C, Eberhardt W, Suzuki S, Achiba Y, Esch F, Barnaba M, Cocco D (1997) Evidence for incomplete charge transfer and La-derived states in the valence bands of endohedrally doped La@C82. Phys Rev Lett 79:2289–2292

    Article  Google Scholar 

  66. Bennig PJ, Martins JL, Weaver JH, Chibante LPF, Smalley RE (1991) Electronic states of KxC60: insulating, metallic, and superconducting character. Science 252:1417–1419

    Article  Google Scholar 

  67. Syamala MS, Cross RJ, Saunders M (2002) 129Xe NMR spectrum of xenon inside C60. J Am Chem Soc 124:6216–6219

    Article  Google Scholar 

  68. Gromov EV, Klaiman S, Cederbaum LS (2015) Influence of caged noble-gas atom on the superatomic and valence states of C60. Mol Phys 1–6

    Google Scholar 

  69. Jorn R, Zhao J, Petek H, Seideman T (2011) Current-driven dynamics in molecular junctions: endohedral fullerenes. ACS Nano 5:7858–7865

    Article  Google Scholar 

  70. Feng M, Shi YL, Lin CW, Zhao J, Liu FP, Yang SF, Petek H (2013) Energy stabilization of the s-symmetry superatom molecular orbital by endohedral doping of C82 fullerene with a lanthanum atom. Phys Rev B 88:075417

    Article  Google Scholar 

  71. Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113

    Article  Google Scholar 

  72. Shinohara H (2000) Endohedral metallofullerenes. Rep Prog Phys 63:843

    Article  Google Scholar 

  73. Feng M, Shi Y, Lin C, Zhao J, Liu F, Yang S, Petek H (2013) Energy stabilization of the s-symmetry superatom molecular orbital by endohedral doping of C82 fullerene with a lanthanum atom. Phys Rev B 88:075417

    Article  Google Scholar 

  74. Iwamoto M, Ogawa D, Yasutake Y, Azuma Y, Umemoto H, Ohashi K, Izumi N, Shinohara H, Majima Y (2010) Molecular orientation of individual Lu@C82 molecules demonstrated by scanning tunneling microscopy. J Phys Chem C 114:14704–14709

    Article  Google Scholar 

  75. Huang HJ, Yang SH (2000) Preparation and characterization of the endohedral metallofullerene Lu@C82. J Phys Chem Solids 61:1105–1110

    Article  Google Scholar 

  76. Svitova AL, Krupskaya Y, Samoylova N, Kraus R, Geck J, Dunsch L, Popov AA (2014) Magnetic moments and exchange coupling in nitride clusterfullerenes GdxSc3-xN@C80 (x = 1-3). Dalton Trans 43:7387–7390

    Article  Google Scholar 

  77. Hermanns CF, Bernien M, Krüger A, Schmidt C, Waßerroth ST, Ahmadi G, Heinrich BW, Schneider M, Brouwer PW, Franke KJ, Weschke E, Kuch W (2013) Magnetic coupling of Gd3N@80 endohedral fullerenes to a substrate. Phys Rev Lett 111:167203

    Article  Google Scholar 

  78. Popov AA, Dunsch L (2008) Hindered cluster rotation and 45Sc hyperfine splitting constant in distonoid anion radical Sc3N@C80, and spatial spin − charge separation as a general principle for anions of endohedral fullerenes with metal-localized lowest unoccupied molecular orbitals. J Am Chem Soc 130:17726–17742

    Article  Google Scholar 

  79. Popov AA, Zhang L, Dunsch L (2010) A pseudoatom in a cage: trimetallofullerene Y3@C80 mimics Y3N@C80 with nitrogen substituted by a pseudoatom. ACS Nano 4:795–802

    Article  Google Scholar 

  80. Aviram A (1988) Molecules for memory, logic, and amplification. J Am Chem Soc 110:5687–5692

    Article  Google Scholar 

  81. Hopfield JJ, Onuchic JN, Beratan DN (1988) A molecular shift register based on electron-transfer. Science 241:817–820

    Article  Google Scholar 

  82. Zhang JL, Zhong JQ, Lin JD, Hu WP, Wu K, Xu GQ, Wee ATS, Chen W (2015) Towards single molecule switches. Chem Soc Rev 44:2998–3022

    Article  Google Scholar 

  83. Kaun CC, Seideman T (2005) Current-driven oscillations and time-dependent transport in nanojunctions. Phys Rev Lett 94:226801

    Article  Google Scholar 

  84. Lee J, Tallarida N, Rios L, Perdue SM, Apkarian VA (2014) Single electron bipolar conductance switch driven by the molecular Aharonov-Bohm effect. ACS Nano 8:6382–6389

    Article  Google Scholar 

  85. Blum AS, Kushmerick JG, Long DP, Patterson CH, Yang JC, Henderson JC, Yao YX, Tour JM, Shashidhar R, Ratna BR (2005) Molecularly inherent voltage-controlled conductance switching. Nat Mater 4:167–172

    Article  Google Scholar 

  86. Dulic D, van der Molen SJ, Kudernac T, Jonkman HT, de Jong JJD, Bowden TN, van Esch J, Feringa BL, van Wees BJ (2003) One-way optoelectronic switching of photochromic molecules on gold. Phys Rev Lett 91:207402

    Article  Google Scholar 

  87. Eigler DM, Lutz CP, Rudge WE (1991) An atomic switch realized with the scanning tunneling microscope. Nature 352:600–603

    Article  Google Scholar 

  88. Osorio EA, Moth-Poulsen K, van der Zant HSJ, Paaske J, Hedegård P, Flensberg K, Bendix J, Bjørnholm T (2010) Electrical manipulation of spin states in a single electrostatically gated transition-metal complex. Nano Lett 10:105–110

    Article  Google Scholar 

  89. Khajetoorians AA, Wiebe J, Chilian B, Wiesendanger R (2011) Realizing all-spin-based logic operations atom by atom. Science 332:1062–1064

    Article  Google Scholar 

  90. Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524–526

    Article  Google Scholar 

  91. Crommie MF, Lutz CP, Eigler DM (1993) Confinement of electrons to quantum corrals on a metal surface. Science 262:218–220

    Article  Google Scholar 

  92. Repp J, Meyer G, Olsson FE, Persson M (2004) Controlling the charge state of individual gold adatoms. Science 305:493–495

    Article  Google Scholar 

  93. Wu SW, Ogawa N, Nazin GV, Ho W (2008) Conductance hysteresis and switching in a single-molecule junction. J Phys Chem C 112:5241–5244

    Article  Google Scholar 

  94. Jan van der Molen S, Liljeroth P (2010) Charge transport through molecular switches. J Phys Condens Matter 22 133001

    Google Scholar 

  95. Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampaio J, Raymo FM, Stoddart JF, Heath JR (2000) A [2]catenane-based solid state electronically reconfigurable switch. Science 289:1172–1175

    Article  Google Scholar 

  96. Morgenstern K (2009) Isomerization reactions on single adsorbed molecules. Acc Chem Res 42:213–223

    Article  Google Scholar 

  97. Feng M, Gao L, Deng ZT, Ji W, Guo XF, Du SX, Shi DX, Zhang DQ, Zhu DB, Gao HJ (2007) Reversible, erasable, and rewritable nanorecording on an H2 rotaxane thin film. J Am Chem Soc 129:2204–2205

    Article  Google Scholar 

  98. Gauyacq JP, Lorente N, Novaes FD (2012) Excitation of local magnetic moments by tunneling electrons. Prog Surf Sci 87:63–107

    Article  Google Scholar 

  99. Collier CP, Wong EW, Belohradsky M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR (1999) Electronically configurable molecular-based logic gates. Science 285:391–394

    Article  Google Scholar 

  100. Choi BY, Kahng SJ, Kim S, Kim H, Kim HW, Song YJ, Ihm J, Kuk Y (2006) Conformational molecular switch of the azobenzene molecule: a scanning tunneling microscopy study. Phys Rev Lett 96:156106

    Article  Google Scholar 

  101. Iancu V, Hla SW (2006) Realization of a four-step molecular switch in scanning tunneling microscope manipulation of single chlorophyll-a molecules. P Natl Acad Sci USA 103:13718–13721

    Article  Google Scholar 

  102. Comstock MJ, Levy N, Kirakosian A, Cho J, Lauterwasser F, Harvey JH, Strubbe DA, Frechet JMJ, Trauner D, Louie SG, Crommie MF (2007) Reversible photomechanical switching of individual engineered molecules at a metallic surface. Phys Rev Lett 99:038301

    Article  Google Scholar 

  103. Liljeroth P, Repp J, Meyer G (2007) Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317:1203–1206

    Article  Google Scholar 

  104. Hagen S, Kate P, Leyssner F, Nandi D, Wolf M, Tegeder P (2008) Excitation mechanism in the photoisomerization of a surface-bound azobenzene derivative: role of the metallic substrate. J Chem Phys 129

    Google Scholar 

  105. Pan SA, Fu Q, Huang T, Zhao AD, Wang B, Luo Y, Yang JL, Hou JG (2009) Design and control of electron transport properties of single molecules. Proc Natl Acad Sci USA 106:15259–15263

    Article  Google Scholar 

  106. Huang T, Zhao J, Feng M, Popov AA, Yang SF, Dunsch L, Petek H (2012) A multi-state single-molecule switch actuated by rotation of an encapsulated cluster within a fullerene cage. Chem Phys Lett 552:1–12

    Article  Google Scholar 

  107. Park HK, Park J, Lim AKL, Anderson EH, Alivisatos AP, McEuen PL (2000) Nanomechanical oscillations in a single-C60 transistor. Nature 407:57–60

    Article  Google Scholar 

  108. Zhao J, Zeng CG, Cheng X, Wang KD, Wang G, Yang JL, Hou JG, Zhu QS (2005) Single C59N molecules as a molecular rectifier. Phys Rev Lett 95:045502

    Article  Google Scholar 

  109. Danilov AV, Hedegård P, Golubev DS, Bjørnholm T, Kubatkin SE (2008) Nanoelectromechanical switch operating by tunneling of an entire C60 molecule. Nano Lett 8:2393–2398

    Article  Google Scholar 

  110. Nakaya M, Kuwahara Y, Aono M, Nakayama T (2008) Reversibility-controlled single molecular level chemical reaction in a C60 monolayer via ionization induced by scanning transmission microscopy. Small 4:538–541

    Article  Google Scholar 

  111. Yasutake Y, Shi ZJ, Okazaki T, Shinohara H, Majima Y (2005) Single molecular orientation switching of an endohedral metallofullerene. Nano Lett 5:1057–1060

    Article  Google Scholar 

  112. Neel N, Limot L, Kroger J, Berndt R (2008) Rotation of C60 in a single-molecule contact. Phys Rev B 77:125431

    Article  Google Scholar 

  113. Bethune DS, Johnson RD, Salem JR, de Vries MS, Yannoni CS (1993) Atoms in carbon cages: the structure and properties of endohedral fullerenes. Nature 366:123–128

    Article  Google Scholar 

  114. Petek H (2014) Single-molecule femtochemistry: molecular imaging at the space-time limit. ACS Nano 8:5–13

    Article  Google Scholar 

  115. Huang T, Zhao J, Peng M, Popov AA, Yang SF, Dunsch L, Petek H (2011) A molecular switch based on current-driven rotation of an encapsulated cluster within a fullerene cage. Nano Lett 11:5327–5332

    Article  Google Scholar 

  116. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55–57

    Article  Google Scholar 

  117. Chaur MN, Melin F, Ortiz AL, Echegoyen L (2009) Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew Chem Int Ed 48:7514–7538

    Article  Google Scholar 

  118. Wang T, Wang C (2014) Endohedral metallofullerenes based on spherical Ih-C80 cage: molecular structures and paramagnetic properties. Acc Chem Res 47:450–458

    Article  Google Scholar 

  119. Alvarez L, Pichler T, Georgi P, Schwieger T, Peisert H, Dunsch L, Hu Z, Knupfer M, Fink J, Bressler P, Mast M, Golden MS (2002) Electronic structure of pristine and intercalated Sc3N@C80 metallofullerene. Phys Rev B 66:035107

    Article  Google Scholar 

  120. Kobayashi K, Sano Y, Nagase S (2001) Theoretical study of endohedral metallofullerenes: Sc3−nLanN@C80 (n = 0–3). J Comput Chem 22:1353–1358

    Article  Google Scholar 

  121. Heine T, Vietze K, Seifert G (2004) 13C NMR fingerprint characterizes long time-scale structure of Sc3N@C80 endohedral fullerene. Magn Reso Chem 42:S199–S201

    Article  Google Scholar 

  122. Morton JJL, Tiwari A, Dantelle G, Porfyrakis K, Ardavan A, Briggs CAD (2008) Switchable ErSc2N rotor within a C80 fullerene cage: an electron paramagnetic resonance and photoluminescence excitation study. Phys Rev Lett 101:013002

    Article  Google Scholar 

  123. Huang T, Zhao J, Feng M, Popov AA, Yang S, Dunsch L, Petek H (2011) A Molecular switch based on current-driven rotation of an encapsulated cluster within a fullerene cage. Nano Lett 11:5327–5332

    Article  Google Scholar 

  124. Huang T, Zhao J, Feng M, Popov AA, Yang S, Dunsch L, Petek H (2012) A multi-state single-molecule switch actuated by rotation of an encapsulated cluster within a fullerene cage. Frontiers article in. Chem Phys Lett 552:1–12

    Article  Google Scholar 

  125. Popov AA, Dunsch L (2008) Hindered cluster rotation and 45Sc hyperfine splitting constant in distonoid anion radical Sc3N@C80−, and spatial spin − charge separation as a general principle for anions of endohedral fullerenes with metal-localized lowest unoccupied molecular orbitals. J Am Chem Soc 130:17726–17742

    Article  Google Scholar 

  126. Feng Y, Wang T, Xiang J, Gan L, Wu B, Jiang L, Wang C (2015) Tuneable dynamics of a scandium nitride cluster inside an Ih-C80 cage. Dalton Trans 44:2057–2061

    Article  Google Scholar 

  127. Stipe BC, Rezaei MA, Ho W (1998) Inducing and viewing the rotational motion of a single molecule. Science 279:1907–1909

    Article  Google Scholar 

  128. Kim Y, Motobayashi K, Frederiksen T, Ueba H, Kawai M (2015) Action spectroscopy for single-molecule reactions—experiments and theory. Prog Surf Sci 90:85–143

    Article  Google Scholar 

  129. Sainoo Y, Kim Y, Okawa T, Komeda T, Shigekawa H, Kawai M (2005) Excitation of molecular vibrational modes with inelastic scanning tunneling microscopy processes: examination through action spectra of cis-2-butene on Pd(110). Phys Rev Lett 95:246102

    Article  Google Scholar 

  130. Stipe BC, Rezaei MA, Ho W (1998) Coupling of vibrational excitation to the rotational motion of a single adsorbed molecule. Phys Rev Lett 81:1263–1266

    Article  Google Scholar 

  131. Komeda T, Kim Y, Kawai M, Persson BNJ, Ueba H (2002) Lateral hopping of molecules induced by excitation of internal vibration mode. Science 295:2055–2058

    Article  Google Scholar 

  132. Ohara M, Kim Y, Yanagisawa S, Morikawa Y, Kawai M (2008) Role of molecular orbitals near the Fermi level in the excitation of vibrational modes of a single molecule at a scanning tunneling microscope junction. Phys Rev Lett 100:136104

    Article  Google Scholar 

  133. Parschau M, Passerone D, Rieder K-H, Hug HJ, Ernst K-H (2009) Switching the chirality of single adsorbate complexes. Angew Chem Int Ed 48:4065–4068

    Article  Google Scholar 

  134. Ueba H, Tikhodeev SG, Persson BNJ (2010) Theory of inelastic tunneling current driven motions of single adsorbates. In: Seideman T (ed) Current-driven phenomena in nanoelectronics. Pan Stanford publishing Pte Ltd., Singapore

    Google Scholar 

  135. Krause M, Kuzmany H, Georgi P, Dunsch L, Vietze K, Seifert G (2001) Structure and stability of endohedral fullerene Sc3N@C80: a Raman, infrared, and theoretical analysis. J Chem Phys 115:6596–6605

    Article  Google Scholar 

  136. Salam GP, Persson M, Palmer RE (1994) Possibility of coherent multiple excitation in atom transfer with a scanning tunneling microscope. Phys Rev B 49:10655

    Article  Google Scholar 

  137. Ueba H, Persson BNJ (2007) Action spectroscopy for single-molecule motion induced by vibrational excitation with a scanning tunneling microscope. Phys Rev B 75:041403

    Article  Google Scholar 

  138. Motobayashi K, Kim Y, Ueba H, Kawai M (2010) Insight into action spectroscopy for single molecule motion and reactions through inelastic electron tunneling. Phys Rev Lett 105:076101

    Article  Google Scholar 

  139. Foley ET, Kam AF, Lyding JW, Avouris P (1998) Cryogenic UHV-STM study of hydrogen and deuterium desorption from Si(100). Phys Rev Lett 80:1336–1339

    Article  Google Scholar 

  140. Lastapis M, Martin M, Riedel D, Hellner L, Comtet G, Dujardin G (2005) Picometer-scale electronic control of molecular dynamics inside a single molecule. Science 308:1000–1003

    Article  Google Scholar 

  141. Seideman T (2005) Nonadiabatic vibronic dynamics as a tool: from surface nanochemistry to coherently driven molecular machines. Isral J Chem 45:227–237

    Article  Google Scholar 

  142. Zhao J, Petek H (2014) Non-nuclear electron transport channels in hollow molecules. Phys Rev B 90:075412

    Article  Google Scholar 

  143. Zhao J, Zheng Q, Petek H, Yang J (2014) Nonnuclear nearly free electron conduction channels induced by doping charge in nanotube-molecular sheet composites. J Phys Chem A 118:7255–7260

    Article  Google Scholar 

  144. Zhao S, Li Z, Yang J (2014) Obtaining two-dimensional electron gas in free space without resorting to electron doping: an electride based design. J Am Chem Soc 136:13313–13318

    Article  Google Scholar 

  145. Roy X, Lee C-H, Crowther AC, Schenck CL, Besara T, Lalancette RA, Siegrist T, Stephens PW, Brus LE, Kim P, Steigerwald ML, Nuckolls C (2013) Nanoscale atoms in solid-state chemistry. Science 341:157–160

    Article  Google Scholar 

  146. Le Poul N, Colasson B (2015) Electrochemically and chemically induced redox processes in molecular machines. Chem Electro Chem 2:475–496

    Google Scholar 

Download references

Acknowledgments

The authors thank J. Zhao, T. Huang, A. Popov, S. Yang, and L. Dunsch for their contributions to the research described herein. The authors acknowledge support from the W.M. Keck Foundation and the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-FG02-09ER16056. We also thank support from NSFC 11574364 of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrvoje Petek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Feng, M., Petek, H. (2017). Scrutinizing the Endohedral Space: Superatom States and Molecular Machines. In: Popov, A. (eds) Endohedral Fullerenes: Electron Transfer and Spin. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47049-8_6

Download citation

Publish with us

Policies and ethics