Skip to main content

Photoexcitation in Donor–Acceptor Dyads Based on Endohedral Fullerenes and Their Applications in Organic Photovoltaics

  • Chapter
  • First Online:
Book cover Endohedral Fullerenes: Electron Transfer and Spin

Part of the book series: Nanostructure Science and Technology ((NST))

  • 965 Accesses

Abstract

Fullerenes are popular electron acceptors for their high electron affinity and low reorganization energy . Photoexcitation in endohedral fullerenes (EMFs)-based donor–acceptor dyads have been comprehensively studied in the past decade. Different donor moieties such as ferrocene, exTTF, zinc tetraphenylporphyrine, triphenylamine were successfully used to construct EMF-based donor–acceptor dyads, and the charge/energy transfer mechanisms between versatile donors and EMF acceptors were extensively investigated. Besides, the charge carrier mobility of solid EMFs and applications of EMFs in organic photovoltaics (OPVs) and photoelectrochemical (PEC) cells were also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He Y, Li Y (2011) Fullerene derivative acceptors for high performance polymer solar cells. Phys Chem Chem Phys 13:1970–1983

    Article  Google Scholar 

  2. (a) Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113; (b) Lu X, Feng L, Akasaka T et al (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41:7723–7760

    Google Scholar 

  3. Pinzón JR, Plonska-Brzezinska ME, Cardona CM et al (2008) Sc3N@C80-ferrocene electron-donor/acceptor conjugates as promising materials for photovoltaic applications. Angew Chem Int Ed Engl 47:4173–4176

    Article  Google Scholar 

  4. Guldi DM, Maggini M, Scorrano G et al (1997) Intramolecular electron transfer in fullerene/ferrocene based donor–bridge–acceptor dyads. J Am Chem Soc 119:974–980

    Article  Google Scholar 

  5. Pinzón JR, Cardona CM, Herranz MA et al (2009) Metal nitride cluster fullerene M3N@C80 (M = Y, Sc) based dyads: synthesis, and electrochemical, theoretical and photophysical studies. Chem Eur J 15:864–877

    Article  Google Scholar 

  6. Takano Y, Herranz MA, Martin N et al (2010) Donor-acceptor conjugates of lanthanum endohedral metallofullerene and pi-extended tetrathiafulvalene. J Am Chem Soc 132:8048–8055

    Article  Google Scholar 

  7. Takano Y, Obuchi S, Mizorogi N et al (2012) Stabilizing ion and radical ion pair states in a paramagnetic endohedral metallofullerene/pi-extended tetrathiafulvalene conjugate. J Am Chem Soc 134:16103–16106

    Article  Google Scholar 

  8. Guldi DM, Feng L, Radhakrishnan SG et al (2010) A molecular Ce2@I(h)-C80 switch–unprecedented oxidative pathway in photoinduced charge transfer reactivity. J Am Chem Soc 132:9078–9086

    Article  Google Scholar 

  9. Wolfrum S, Pinzon JR, Molina-Ontoria A et al (2011) Utilization of Sc3N@C80 in long-range charge transfer reactions. Chem Commun 47:2270–2272

    Article  Google Scholar 

  10. Feng L, Radhakrishnan SG, Mizorogi N et al (2011) Synthesis and charge-transfer chemistry of La2@I(h)-C80/Sc3N@I(h)-C80-zinc porphyrin conjugates: impact of endohedral cluster. J Am Chem Soc 133:7608–7618

    Article  Google Scholar 

  11. Feng L, Slanina Z, Sato S et al (2011) Covalently linked porphyrin-La@C82 hybrids: structural elucidation and investigation of intramolecular interactions. Angew Chem Int Ed Engl 50:5909–5912

    Article  Google Scholar 

  12. Pinzón JR, Gasca DC, Sankaranarayanan SG et al (2009) Photoinduced charge transfer and electrochemical properties of triphenylamineIh-Sc3N@C80 donor–acceptor conjugates. J Am Chem Soc 131:7727–7734

    Article  Google Scholar 

  13. Feng L, Rudolf M, Wolfrum S et al (2012) A paradigmatic change: linking fullerenes to electron acceptors. J Am Chem Soc 134:12190–12197

    Article  Google Scholar 

  14. Takano Y, Obuchi S, Mizorogi N et al (2012) An endohedral metallofullerene as a pure electron donor: intramolecular electron transfer in donor–acceptor conjugates of La2@C80 and 11,11,12,12-tetracyano-9,10-anthra-p-quinodimethane (TCAQ). J Am Chem Soc 134:19401–19408

    Article  Google Scholar 

  15. Liu B, Fang H, Li X et al (2015) Synthesis and photophysical properties of a Sc3N@C80-Corrole electron donor–acceptor conjugate. Chem Eur J 21:746–752

    Article  Google Scholar 

  16. Feng L, Rudolf M, Trukhina O (2015) Tuning intramolecular electron and energy transfer processes in novel conjugates of La2@C80 and electron accepting subphthalocyanines. Chem Comm 51:330–333

    Article  Google Scholar 

  17. Yang S, Fan L, Yang S (2003) Preparation, characterization, and photoelectrochemistry of Langmuir–Blodgett films of the endohedral metallofullerene Dy@C82 mixed with metallophthalocyanines. J Phys Chem B 107:8403–8411

    Article  Google Scholar 

  18. Yang S, Yang S (2002) Preparation and film formation behavior of the supramolecular complex of the endohedral metallofullerene Dy@C82 with Calix[8]arene. Langmuir 18:8488–8495

    Article  Google Scholar 

  19. Grimm B, Schornbaum J, Cardona CM et al (2011) Enhanced binding strengths of acyclic porphyrin hosts with endohedral metallofullerenes. Chem Sci 2:1530–1537

    Article  Google Scholar 

  20. Hernandez-Eguia LP, Escudero-Adan EC, Pinzon JR et al (2011) Complexation of Sc3N@C80 endohedral fullerene with cyclic Zn-bisporphyrins: solid state and solution studies. J Org Chem 76:3258–3265

    Article  Google Scholar 

  21. Tsuchiya T, Rudolf M, Wolfrum S et al (2013) Coordinative interactions between porphyrins and C60, La@C82, and La2@C80. Chem Eur J 19:558–565

    Article  Google Scholar 

  22. Kawashima Y, Ohkubo K, Fukuzumi S (2012) Enhanced photoinduced electron-transfer reduction of Li+@C60 in comparison with C60. J Phys Chem A 116:8942–8948

    Google Scholar 

  23. Kawashima Y, Ohkubo K, Fukuzumi S (2013) Small reorganization energies of photoinduced electron transfer between spherical fullerenes. J Phys Chem A 117:6737–6743

    Google Scholar 

  24. Yamada M, Ohkubo K, Shionoya M et al (2014) Photoinduced electron transfer in a charge-transfer complex formed between corannulene and Li+@C60 by concave–convex π–π interactions. J Am Chem Soc 136:13240–13248

    Article  Google Scholar 

  25. Supur M, Kawashima Y, Larsen KR et al (2014) Robust Inclusion Complexes of crown ether fused tetrathiafulvalenes with Li+@C60 to afford efficient photodriven charge separation. Chem Eur J 20:13976–13983

    Article  Google Scholar 

  26. Taherpour A, Maleki-Noureini M (2013) Free energies of electron transfer, electron transfer kinetic theoretical and quantitative structural relationships and electrochemical properties studies of gadolinium nitride cluster fullerenes Gd3N@Cn in [X–UT–Y][Gd3N@Cn](n = 80, 82, 84, 86 and 88) Supramolecular Complexes. Fuller Nanotub Carbon Nanostruct 21:485–502

    Article  Google Scholar 

  27. Ross RB, Cardona CM, Guldi DM et al (2009) Endohedral fullerenes for organic photovoltaic devices. Nat Mater 8:208–212

    Article  Google Scholar 

  28. Ross RB, Cardona CM, Swain FB et al (2009) Tuning conversion efficiency in metallo endohedral fullerene-based organic photovoltaic devices. Adv Funct Mater 19:2332–2337

    Article  Google Scholar 

  29. Liedtke M, Sperlich A, Kraus H et al (2011) Triplet exciton generation in bulk-heterojunction solar cells based on endohedral fullerenes. J Am Chem Soc 133:9088–9094

    Article  Google Scholar 

  30. Yang S, Fan L, Yang S (2004) Langmuir–Blodgett Films of Poly(3-hexylthiophene) Doped with the endohedral metallofullerene Dy@C82: preparation, characterization, and application in photoelectrochemical cells. J Phys Chem B 108:4394–4404

    Article  Google Scholar 

  31. Nuttall CJ, Hayashi Y, Yamazaki K et al (2002) Dipole dynamics in the endohedral metallofullerene La@C82. Adv Mater 14:293–296

    Article  Google Scholar 

  32. Kubozono Y, Takabayashi Y, Shibata K et al (2003) Crystal structure and electronic transport of Dy@C82. Phys Rev B 67

    Google Scholar 

  33. Kareev IE, Bubnov VP, Laukhina EE et al (2003) Endohedral metallofullerenes M@C82 (M = La, Y): synthesis and transport properties. Carbon 41:1375–1380

    Article  Google Scholar 

  34. (a) Kanbara T, Shibata K, Fujiki S et al (2003) N-channel field effect transistors with fullerene thin films and their application to a logic gate circuit. Chem Phys Lett 379:223–229; (b) Rikiishi Y, Kubozono Y, Hosokawa T et al (2004) Structural and electronic characterizations of two isomers of Ce@C82. J Phys Chem B 108:7580–7585; (c) Nagano T, Kuwahara E, Takayanagi T et al (2005) Fabrication and characterization of field-effect transistor device with C2v isomer of Pr@C82. Chem Phys Lett 409:187–191; (d) Kobayashi S, Mori S, Iida S et al (2003) Conductivity and field effect transistor of La2@C80 metallofullerene. J Am Chem Soc 125:8116–8117

    Google Scholar 

  35. Popok VN, Gromov AV, Jönsson M et al (2008) Electronic properties of thin films sublimed from La@C82 and Li@C60. NANO 03:155–160

    Article  Google Scholar 

  36. (a) Sato S, Seki S, Honsho Y et al (2011) Semi-metallic single-component crystal of soluble La@C82 derivative with high electron mobility. J Am Chem Soc 133:2766–2771; (b) Sato S, Seki S, Luo G et al (2012) Tunable charge-transport properties of I(h)-C80 endohedral metallofullerenes: investigation of La2@C80, Sc3N@C80, and Sc3C2@C80. J Am Chem Soc 134:11681–11686

    Google Scholar 

  37. Sato S, Nikawa H, Seki S et al (2012) A co-crystal composed of the paramagnetic endohedral metallofullerene La@C82 and a nickel porphyrin with high electron mobility. Angew Chem Int Ed Engl 51:1589–1591

    Article  Google Scholar 

  38. Sun Y, Maeda Y, Sezaimaru H et al (2014) Carrier transport properties of nanocrystalline Er3N@C80. J Appl Phys 116:034301

    Article  Google Scholar 

  39. Li Z, Luo W, Zhang M et al (2013) Photoelectrochemical cells for solar hydrogenproduction: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 6:347–370

    Article  Google Scholar 

  40. Bard AJ, Stratmann M, Licht S (eds) (2002) Encyclopedia of electrochemistry. In: Semiconductor Electrodes and Photoelectrochemistry, vol 6. Wiley-VCH, Weinheim

    Google Scholar 

  41. (a) Miller B, Rosamilia JM, Dabbagh G et al (1991) Photoelectrochemical behavior of C60 films. J Am Chem Soc 113:6291–6293; (b) Licht S, Khaselev O, Ramakrishnan PA et al (1998) Fullerene photoelectrochemical solar cells. Sol Energ Mat Sol C 51:9–19; (c) Wei T, Shi Y, Zhai J et al (2000) Synthesis, monolayer fabrication and photoelectric conversion property of two pyrrolidinofullerene carboxylic acid derivatives. Chem Phys Lett 319:7–12

    Google Scholar 

  42. (a) Yang S, Yang S (2001) Photoelectrochemistry of Langmuir–Blodgett films of the endohedral metallofullerene Dy@C82 on ITO electrodes. J Phys Chem B 105:9406–9412; (b) Yang S, Fan L, Yang S (2004) Significantly enhanced photocurrent efficiency of a poly(3-hexylthiophene) photoelectrochemical device by doping with the endohedral metallofullerene Dy@C82. Chem Phys Lett 388:253–258

    Google Scholar 

  43. Xu Y, Guo J, Wei T et al (2013) Micron-sized hexagonal single-crystalline rods of metal nitride clusterfullerene: preparation, characterization, and photoelectrochemical application. Nanoscale 5:1993–2001

    Article  Google Scholar 

Download references

Acknowledgements

The research work was partially supported by National Basic Research Program of China (2011CB921400) and National Natural Science Foundation of China (21132007, 21371164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangfeng Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhen, J., Liu, Q., Yang, S. (2017). Photoexcitation in Donor–Acceptor Dyads Based on Endohedral Fullerenes and Their Applications in Organic Photovoltaics. In: Popov, A. (eds) Endohedral Fullerenes: Electron Transfer and Spin. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47049-8_5

Download citation

Publish with us

Policies and ethics