Skip to main content

Non-Chromatographic Separation of Endohedral Metallofullerenes by Utilizing Their Redox Properties

  • Chapter
  • First Online:
  • 941 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Development of non-chromatographic separation for endohedral metallofullerenes has been put forward by many research groups with the goal of more straightforward and less expensive alternatives to HPLC . This chapter describes the progress in non-chromatographic separation approaches utilizing redox properties of EMFs, including electrolysis-assisted separation, separation with the use of redox-active solvents and redox reagents, or the use of complexation of fullerenes with Lewis acids .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stibor A, Schefzyk H, Fortagh J (2010) Sublimation of the endohedral fullerene Er3N@C80. Phys Chem Chem Phys 12(40):13076–13081

    Article  Google Scholar 

  2. Chai Y, Guo T, Jin CM et al (1991) Fullerenes with metals inside. J Phys Chem 95(20):7564–7568

    Article  Google Scholar 

  3. Raebiger JW, Bolskar RD (2008) Improved production and separation processes for gadolinium metallofullerenes. J Phys Chem C 112(17):6605–6612

    Article  Google Scholar 

  4. Diener MD, Smith CA, Veirs DK (1997) Anaerobic preparation and solvent-free separation of uranium endohedral metallofullerenes. Chem Mat 9(8):1773–1777

    Article  Google Scholar 

  5. Yeretzian C, Wiley JB, Holczer K et al (1993) Partial separation of fullerenes by gradient sublimation. J Phys Chem 97(39):10097–10101

    Article  Google Scholar 

  6. Ogawa T, Sugai T, Shinohara H (2000) Isolation and characterization of Er@C60. J Am Chem Soc 122(14):3538–3539

    Article  Google Scholar 

  7. Lu X, Bao L, Akasaka T et al (2014) Recent progresses in the chemistry of endohedral metallofullerenes. Chem Commun 50:14701–14715

    Article  Google Scholar 

  8. Lu X, Akasaka T, Nagase S (2011) Chemistry of endohedral metallofullerenes: the role of metals. Chem Commun 47(21):5942–5957

    Article  Google Scholar 

  9. Song FY, Zhang S, Bonifazi D et al (2005) Self-assembly of [60]fullerene-thiol derivatives on mercury surfaces. Langmuir 21(20):9246–9250

    Article  Google Scholar 

  10. Angeli CD, Cai T, Duchamp JC et al (2008) Purification of trimetallic nitride templated endohedral metallofullerenes by a chemical reaction of congeners with eutectic 9-methylanthracene. Chem Mat 20(15):4993–4997

    Article  Google Scholar 

  11. Wu B, Wang T, Zhang Z et al (2013) An effective retro-cycloaddition of M3N@C80 (M = Sc, Lu, Ho) metallofulleropyrrolidines. Chem Commun 49(89):10489–10491

    Article  Google Scholar 

  12. Stevenson S, Rose CB, Robson AA et al (2014) Effect of water and solvent selection on the SAFA purification times for metallic nitride fullerenes. Fullerenes, Nanotubes, Carbon Nanostruct 22(1–3):182–189

    Article  Google Scholar 

  13. Stevenson S, Rottinger KA, Field JS (2014) Fractionation of rare-earth metallofullerenes via reversible uptake and release from reactive silica. Dalton Trans 43(20):7435–7441

    Article  Google Scholar 

  14. Stevenson S, Harich K, Yu H et al (2006) Nonchromatographic “stir and filter approach” (SAFA) for isolating Sc3N@C80 metallofullerenes. J Am Chem Soc 128(27):8829–8835

    Article  Google Scholar 

  15. Stevenson S, Mackey MA, Coumbe CE et al (2007) Rapid Removal of D 5h isomer using the “stir and filter approach” and isolation of large quantities of isomerically pure Sc3N@C80 metallic nitride fullerenes. J Am Chem Soc 129(19):6072–6073

    Article  Google Scholar 

  16. Diener MD, Alford JM (1998) Isolation and properties of small-bandgap fullerenes. Nature 393(6686):668–671

    Article  Google Scholar 

  17. Tsuchiya T, Wakahara T, Shirakura S et al (2004) Reduction of endohedral metallofullerenes: a convenient method for isolation. Chem Mat 16(22):4343–4346

    Article  Google Scholar 

  18. Tsuchiya T, Wakahara T, Lian YF et al (2006) Selective extraction and purification of endohedral metallofullerene from carbon soot. J Phys Chem B 110(45):22517–22520

    Article  Google Scholar 

  19. Fuchs D, Rietschel H, Michel RH et al (1996) Extraction and chromatographic elution behavior of endohedral metallofullerenes: inferences regarding effective dipole moments. J Phys Chem 100(2):725–729

    Article  Google Scholar 

  20. Laukhina EE, Bubnov VP, Estrin YI et al (1998) Novel proficient method for isolation of endometallofullerenes from fullerene-containing soots by two-step o-xylene-N. N-dimethylformamide extraction. J Mater Chem 8(4):893–895

    Google Scholar 

  21. Ding JQ, Yang SH (1996) Efficient N, N-dimethylformamide extraction of endohedral metallofullerenes for HPLC purification. Chem Mat 8(12):2824–2827

    Article  Google Scholar 

  22. Yamamoto K, Funasaka H, Takahashi T et al (1994) Isolation of an ESR-active metallofullerene of La@C82. J Phys Chem 98(8):2008–2011

    Article  Google Scholar 

  23. Kubozono Y, Ohta T, Hayashibara T et al (1995) Preparation and extraction of Ca@C60. Chem Lett 6:457–458

    Article  Google Scholar 

  24. Xiao J, Savina MR, Martin GB et al (1994) Efficient HPLC purification of endohedral metallofullerenes on a porphyrin-silica stationary phase. J Am Chem Soc 116(20):9341–9342

    Article  Google Scholar 

  25. Anderson MR, Dorn HC, Stevenson SA (2000) Making connections between metallofullerenes and fullerenes: electrochemical investigations. Carbon 38(11–12):1663–1670

    Article  Google Scholar 

  26. Liu BB, Zou GT, Yang HB et al (1997) Synthesis, extraction and electronic structure of Ce@C2n . J Phys Chem Solids 58(11):1873–1876

    Article  Google Scholar 

  27. Sun DY, Liu ZY, Guo XH et al (1997) High-yield extraction of endohedral rare-earth fullerenes. J Phys Chem B 101(20):3927–3930

    Article  Google Scholar 

  28. Kubozono Y, Maeda H, Takabayashi Y et al (1996) Extractions of Y@C60, Ba@C60, La@C60, Ce@C60, Pr@C60, Nd@C60 and Gd@C60 with aniline. J Am Chem Soc 118(29):6998–6999

    Article  Google Scholar 

  29. Lian YF, Shi ZJ, Zhou XH et al (2004) Different extraction behaviors between divalent and trivalent endohedral metallofullerenes. Chem Mat 16(9):1704–1714

    Article  Google Scholar 

  30. Solodovnikov SP, Tumanskii BL, Bashilov VV et al (2001) Spectral study of reactions of La@C-82 and Y@C-82 with amino-containing solvents. Russ Chem Bull 50(11):2242–2244

    Article  Google Scholar 

  31. Kareev IE, Bubnov VP, Laukhina EE et al (2004) Experimental evidence in support of the formation of anionic endohedral metallofullerenes during their extraction with N. N-dimethylformamide. Fuller Nanotub Carbon Nanostruct 12(1–2):65–69

    Google Scholar 

  32. Bolskar RD, Alford JM (2003) Chemical oxidation of endohedral metallofullerenes: identification and separation of distinct classes. Chem Commun 11:1292–1293

    Article  Google Scholar 

  33. Aoyagi S, Nishibori E, Sawa H et al (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2(8):678–683

    Article  Google Scholar 

  34. Okada H, Komuro T, Sakai T et al (2012) Preparation of endohedral fullerene containing lithium (Li@C60) and isolation as pure hexafluorophosphate salt ([Li+@C60][PF6 ]). RSC Adv 2(28):10624–10631

    Article  Google Scholar 

  35. Elliott B, Yu L, Echegoyen L (2005) A Simple Isomeric Separation of D 5h and I h Sc3N@C80 by Selective Chemical Oxidation. J Am Chem Soc 127(31):10885–10888

    Article  Google Scholar 

  36. Cerón MR, Li F-F, Echegoyen L (2013) An efficient method to separate Sc3N@C80 I h and D 5h isomers and Sc3N@C78 by selective oxidation with acetylferrocenium [Fe(COCH3C5H4)Cp]+. Chem-Eur J 19(23):7410–7415

    Article  Google Scholar 

  37. Olah GA, Bucsi I, Lambert C et al (1991) Considered polycarbon supercage chemistry. 3. Polyarenefullerenes, C60(H–Ar)N, obtained by acid-catalyzed fullerenation of aromatics. J Am Chem Soc 113(24):9387–9388

    Article  Google Scholar 

  38. Olah GA, Bucsi I, Aniszfeld R et al (1992) Chemical-reactivity and functionalization of C60 and C70 fullerenes. Carbon 30(8):1203–1211

    Article  Google Scholar 

  39. Olah GA, Bucsi I, Ha DS et al (1997) Friedel-crafts reactions of buckminsterfullerene. Fullerene Sci Technol 5(2):389–405

    Article  Google Scholar 

  40. Bucsi I, Aniszfeld R, Shamma T et al (1994) Convenient separation of high-purity C60 from crude fullerene extract by selective complexation with AlCl3. Proc Natl Acad Sci U S A 91(19):9019–9021

    Article  Google Scholar 

  41. Stevenson S, Mackey MA, Pickens JE et al (2009) Selective complexation and reactivity of metallic nitride and oxometallic fullerenes with lewis acids and use as an effective purification method. Inorg Chem 48(24):11685–11690

    Article  Google Scholar 

  42. Akiyama K, Hamano T, Nakanishi Y et al (2012) Non-HPLC rapid separation of metallofullerenes and empty cages with TiCl4 lewis acid. J Am Chem Soc 134(23):9762–9767

    Article  Google Scholar 

  43. Wang Z, Nakanishi Y, Noda S et al (2012) The origin and mechanism of non-HPLC purification of metallofullerenes with TiCl4. J Phys Chem C 116(48):25563–25567

    Article  Google Scholar 

  44. Wang Z, Nakanishi Y, Noda S et al (2013) Missing small-bandgap metallofullerenes: their isolation and electronic properties. Angew Chem-Int Edit Engl 52(45):11770–11774

    Article  Google Scholar 

  45. Stevenson S, Rottinger KA (2013) CuCl2 for the isolation of a broad array of endohedral fullerenes containing metallic, metallic carbide, metallic nitride, and metallic oxide clusters, and separation of their structural isomers. Inorg Chem 52(16):9606–9612

    Article  Google Scholar 

  46. Cai T, Xu L, Shu C et al (2008) Selective formation of a symmetric Sc3N@C78 bisadduct: adduct docking controlled by an internal trimetallic nitride cluster. J Am Chem Soc 130(7):2136–2137

    Article  Google Scholar 

  47. Yang SF, Rapta P, Dunsch L (2007) The spin state of a charged non-IPR fullerene: the stable radical cation of Sc3N@C68. Chem Commun 2:189–191

    Article  Google Scholar 

  48. Cai T, Xu LS, Anderson MR et al (2006) Structure and enhanced reactivity rates of the D 5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif. J Am Chem Soc 128(26):8581–8589

    Article  Google Scholar 

  49. Krause M, Dunsch L (2004) Isolation and characterisation of two Sc3N@C80 isomers. Chem Phys Chem 5(9):1445–1449

    Article  Google Scholar 

  50. Anderson MR, Dorn HC, Stevenson S et al (1997) The voltammetry of Sc3@C82. J Am Chem Soc 119(2):437–438

    Article  Google Scholar 

  51. Wakahara T, Sakuraba A, Iiduka Y et al (2004) Chemical reactivity and redox property of Sc3@C82. Chem Phys Lett 398:553–556

    Article  Google Scholar 

  52. Ghiassi KB, Olmstead M, Balch AL (2014) Gadolinium-containing endohedral fullerenes: structures and function as magnetic resonance imaging (MRI) agents. Dalton Trans 43:7346–7358

    Article  Google Scholar 

  53. Zhang JF, Fatouros PP, Shu CY et al (2010) High relaxivity trimetallic nitride (Gd3N) metallofullerene MRI contrast agents with optimized functionality. Bioconjugate Chem 21(4):610–615

    Article  Google Scholar 

  54. Zhang J, Ye Y, Chen Y et al (2014) Gd3N@C84(OH) x : a new egg-shaped metallofullerene magnetic resonance imaging contrast agent. J Am Chem Soc 136(6):2630–2636

    Article  Google Scholar 

  55. Shu CY, Gan LH, Wang CR et al (2006) Synthesis and characterization of a new water-soluble endohedral metallofullerene for MRI contrast agents. Carbon 44(3):496–500

    Article  Google Scholar 

  56. Toth E, Bolskar RD, Borel A et al (2005) Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 127(2):799–805

    Article  Google Scholar 

  57. Sitharaman B, Bolskar RD, Rusakova I et al (2004) Gd@C60[C(COOH)2]10 and Gd@C60(OH)x: nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett 4(12):2373–2378

    Article  Google Scholar 

  58. Kato H, Kanazawa Y, Okumura M et al (2003) Lanthanoid endohedral metallofullerenols for MRI contrast agents. J Am Chem Soc 125(14):4391–4397

    Article  Google Scholar 

  59. Bolskar RD, Benedetto AF, Husebo LO et al (2003) First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J Am Chem Soc 125(18):5471–5478

    Article  Google Scholar 

  60. Fatouros PP, Shultz MD (2013) Metallofullerenes: a new class of MRI agents and more? Nanomedicine 8(11):1853–1864

    Article  Google Scholar 

  61. Okumura M, Mikawa M, Yokawa T et al (2002) Evaluation of water-soluble metallofullerenes as MRI contrast agents. Academic Radiology 9:S495–S497

    Article  Google Scholar 

  62. Mikawa M, Kato H, Okumura M et al (2001) Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjugate Chem 12(4):510–514

    Article  Google Scholar 

  63. Stevenson S, Rottinger KA, Fahim M et al (2014) Tuning the selectivity of Gd3N cluster endohedral metallofullerene reactions with lewis acids. Inorg Chem 53(24):12939–12946

    Article  Google Scholar 

  64. Chaur MN, Melin F, Elliott B et al (2007) Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88. J Am Chem Soc 129(47):14826–14829

    Article  Google Scholar 

  65. Chaur MN, Athans AJ, Echegoyen L (2008) Metallic nitride endohedral fullerenes: synthesis and electrochemical properties. Tetrahedron 64(50):11387–11393

    Article  Google Scholar 

  66. Stevenson S, Thompson HR, Arvola KD et al. (2015) Isolation of CeLu2N@I h -C80 through a non-chromatographic, two-step chemical process and crystallographic characterization of the pyramidalized CeLu2N within the icosahedral cage. Chemistry (Weinheim an der Bergstrasse, Germany) 21 (29):10362–10368

    Google Scholar 

  67. Stevenson S, Arvola KD, Fahim M et al (2016) Isolation and crystallographic characterization of Gd3N@D 2(35)-C88 through non-chromatographic methods. Inorg Chem 55(1):62–67

    Article  Google Scholar 

Download references

Acknowledgements

SS thanks the National Science Foundation for funding (Grants CHE-1151668 and CHE-1465173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Stevenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Samoylova, N., Stevenson, S. (2017). Non-Chromatographic Separation of Endohedral Metallofullerenes by Utilizing Their Redox Properties. In: Popov, A. (eds) Endohedral Fullerenes: Electron Transfer and Spin. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47049-8_3

Download citation

Publish with us

Policies and ethics