Skip to main content

Nonmetallic Endofullerenes and the Endohedral Environment: Structure, Dynamics, and Spin Chemistry

  • Chapter
  • First Online:
Book cover Endohedral Fullerenes: Electron Transfer and Spin

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Over the past two decades, nonmetallic endohedral fullerenes containing most of the noble gases and several small molecules have been prepared from C60 and a few other closed- and open-cage fullerenes and isolated in sufficient quantities and purity to be characterized by a variety of spectroscopic and other physical methods. Of particular interest has been determining the effects of encapsulation on the properties both of the cage and of the trapped atom or molecule. Nuclear magnetic resonance , which is independent of the optical properties of the fullerene or the medium, and often insensitive to impurities, has revealed many details of the structure and dynamics of the intracage environment. Low-temperature infrared spectroscopy at both long and short wavelengths, inelastic neutron scattering (INS), and low-temperature solid-state NMR have been used to study the coupled translation–rotation of H2 and H2O molecules trapped in C60. Special attention has been paid to detecting, enriching, and monitoring the stability of the para and ortho nuclear spin–rotational isomer s of H2 and H2O in the endohedral environment with a view toward using the fullerene cage as a “bottle” for storing or releasing the isomers in condensed media under controlled conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strobel TA, Sloan ED, Koh CA (2009) Raman spectroscopic studies of hydrogen clathrate hydrates. J Chem Phys 130:014506

    Article  Google Scholar 

  2. Michaut X, Vasserot A-M, Abouaf-Marguin L (2004) Temperature and time effects on the rovibrational structure of fundamentals of H2O trapped in solid argon: hindered rotation and the RTC satellite. Vibrat Spectros 34:83–93

    Article  Google Scholar 

  3. Chen Z, Lin Y-Y, Strauss HL (2000) Raman spectra of D2 in water and ice. J Phys Chem B 104:3274–3279

    Article  Google Scholar 

  4. Rudkevich DM, Leontiev AV (2004) Molecular encapsulation of gases. Aust J Chem 57:713–722

    Article  Google Scholar 

  5. Brotin T, Dutasta J-P (2009) Cryptophanes and their complexes-present and future. Chem Rev 109:88–130

    Article  Google Scholar 

  6. Fitzgerald SA, Churchill HOH, Korngut PM et al (2006) Low-temperature infrared spectroscopy of H2 in crystalline C60. Phys Rev B 73:155409

    Article  Google Scholar 

  7. Suetsuna T, Dragoe N, Harneit W et al (2002) Separation of N2@C60 and N@C60. Chem Eur J 8:5080–5083

    Article  Google Scholar 

  8. Ito S, Shimotani H, Takagi H et al (2008) On the synthesis conditions of N and N2 endohedral fullerenes. Fullerenes Nanotubes Carbon Nanostruct 16:206–213

    Article  Google Scholar 

  9. Stanisky CM, Cross RJ, Saunders M (2009) Putting atoms and molecules into chemically opened fullerenes. J Am Chem Soc 131:3392–3395

    Article  Google Scholar 

  10. Murata M, Murata Y, Komatsu K (2008) Surgery of fullerenes. Chem Commun 46:6083–6094

    Article  Google Scholar 

  11. Saunders M, Khong A, Shimshi R (1996) Chromatographic fractionation of fullerenes containing noble gas atoms. Chem Phys Lett 248:127–128

    Article  Google Scholar 

  12. DiCamillo BA, Hettich RL, Guiochon G et al (1996) Enrichment and characterization of a noble gas fullerene: Ar@C60. J Phys Chem 100:9197–9201

    Article  Google Scholar 

  13. Yamamoto K, Saunders M, Khong A et al (1999) Isolation and spectral properties of Kr@C60, a stable van der Waals molecule. J Am Chem Soc 121:1591–1596

    Article  Google Scholar 

  14. Syamala MS, Cross RJ, Saunders M (2002) 129Xe NMR spectrum of xenon inside C60. J Am Chem Soc 124:6216–6219

    Article  Google Scholar 

  15. Komatsu K, Murata M, Murata Y (2005) Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 307:238–240

    Article  Google Scholar 

  16. Murata M, Murata Y, Komatsu K (2006) Synthesis and properties of endohedral C60 encapsulating molecular hydrogen. J Am Chem Soc 128:8024–8033

    Article  Google Scholar 

  17. Kurotobi K, Murata Y (2011) A single molecule of water encapsulated in fullerene C60. Science 333:613–616

    Article  Google Scholar 

  18. Frunzi M, Cross RJ, Saunders M (2007) Effect of xenon on fullerene reactions. J Am Chem Soc 129:13343–13346

    Article  Google Scholar 

  19. Matsuo Y, Isobe H, Tanaka T et al (2005) Organic and organometallic derivatives of dihydrogen-encapsulated [60] fullerene. J Am Chem Soc 127:17148–17149

    Article  Google Scholar 

  20. Li Y, Lei X, Lawler RG et al (2012) Synthesis, isomer count, and nuclear spin relaxation of H2O@open-C60 nitroxide derivatives. Org Lett 14:3822–3825

    Article  Google Scholar 

  21. Murata M, Maeda S, Morinaka Y et al (2008) Synthesis and reaction of fullerene C70 encapsulating two molecules of H2. J Am Chem Soc 130:15800–15801

    Article  Google Scholar 

  22. Frunzi M, Baldwin AM, Shibata N et al (2011) Kinetics and solvent-dependent thermodynamics of water capture by a fullerene-based hydrophobic nanocavity. J Phys Chem A 115:735–740

    Article  Google Scholar 

  23. Iwamatsu S-I, Uozaki T, Kobayashi K et al (2004) A bowl-shaped fullerene encapsulates a water into the cage. J Am Chem Soc 126:2668–2669

    Article  Google Scholar 

  24. Rubin Y, Jarrosson T, Wang G-W et al (2001) Insertion of helium and molecular hydrogen through the orifice of an open fullerene. Angew Chem Int Ed 40:1543–1546

    Article  Google Scholar 

  25. Murata Y, Maeda S, Murata M et al (2008) Encapsulation and dynamic behavior of two H2 molecules in an open-cage C70. J Am Chem Soc 130:6702–6703

    Article  Google Scholar 

  26. Chuang S-C, Murata Y, Murata M et al (2007) An orifice-size index for open-cage fullerenes. J Org Chem 72:6447–6453

    Article  Google Scholar 

  27. Stanisky CM, Cross RJ, Saunders M et al (2005) Helium entry and escape through a chemically opened window in a fullerene. J Am Chem Soc 127:299–302

    Article  Google Scholar 

  28. Patchovski Thiel: Patchovskii S, Thiel W (1997) Equilibrium yield for helium incorporation into buckminsterfullerene; quantum-chemical evaluation. J Chem Phys 106:1796–1799

    Google Scholar 

  29. Khong A, Jiménez-Vázquez HA, Saunders M et al (1998) An NMR study of He2 inside C70. J Am Chem Soc 120:6380–6383

    Article  Google Scholar 

  30. Sebastianelli F, Xu M, Bačić Z (2010) Hydrogen molecules inside fullerene C70: quantum dynamics, energetics, maximum occupancy, and comparison with C60. J Am Chem Soc 132:9826–9832

    Article  Google Scholar 

  31. Zimmerman JA, Eyler JR, Bach SBH et al (1991) “Magic number” carbon clusters: ionization potentials and selective reactivity. J Chem Phys 94:3556–3562

    Article  Google Scholar 

  32. Nikawa H, Araki Y, Slanina Z et al (2010) The effect of atomic nitrogen on the C60 cage. Chem Commun 46:631–633

    Article  Google Scholar 

  33. Wakahara T, Matsunaga Y, Katayama A (2003) A comparison of the photochemical reactivity of N@C60 and C60: photolysis with disilirane. Chem Commun 2003:2940–2941

    Article  Google Scholar 

  34. López-Gejo J, Martí AA, Ruzzi M et al (2007) Can H2 inside C60 communicate with the outside world? J Am Chem Soc 129:14554–14555

    Article  Google Scholar 

  35. Takeda A, Yokoyama Y, Ito S et al (2006) Superconductivity of doped Ar@C60. Chem Commun 2006:912–914

    Article  Google Scholar 

  36. Dragoe N, Flank AM, Lagarde P et al (2011) Molecular thermal contraction of the Ar@C60 endohedral fullerene. Phys Rev B 84:155448

    Article  Google Scholar 

  37. Brown S, Cao J, Musfeldt JL et al (2006) Search for microscopic evidence for molecular level negative thermal expansion in fullerenes. Phys Rev B 73:125446

    Article  Google Scholar 

  38. Morinaka Y, Sato S, Wakamiya A et al (2013) X-ray observation of a helium atom and placing a nitrogen atom inside He@C60 and He@C70. Nature Commun 4:1554

    Article  Google Scholar 

  39. Lee M, Suetsuna T et al (2002) Crystallographic characterization of Kr@C60 in (0.09Kr@C60/)0.91C60)·{NiII(OEP)}·2C6H6. Chem Commun 2002:1352–1353

    Article  Google Scholar 

  40. Ito S, Takeda T, Yokoyama et al (2004) Kr extended X-ray absorption fine structure study of endohedral Kr@C60. J Phys Chem B 108:3191–3195

    Article  Google Scholar 

  41. Sawa H, Kakiuchi T, Wakabayashi Y et al (2007) Direct observation of a gas molecule (H2, Ar) swallowed by C60. AIP Conf Proc 879:1419–1422

    Article  Google Scholar 

  42. Sawa H, Wakabayashi Y, Murata Y et al (2005) Floating single hydrogen molecule in an open-cage fullerene. Angew Chem Int Ed 44:1981–1983

    Article  Google Scholar 

  43. Even W, Smith J, Roth MW (2005) Molecular dynamics simulations of noble gases encapsulated in C60 fullerene. Mol Simul 31:207–213

    Article  Google Scholar 

  44. Cimpoesu F, Ito S, Shimotani et al (2011) Vibrational properties of noble gas endohedral fullerenes. Phy Chem Chem Phys 13:9609–9615

    Article  Google Scholar 

  45. Yagi K, Watanabe D (2009) Infrared spectra of water molecule encapsulated inside fullerene studied by instantaneous vibrational analysis. Int J Quantum Chem 109:2080–2090

    Article  Google Scholar 

  46. Bühl M, Patchovskii S, Thiel W (1997) Interaction energies and NMR chemical shifts of noble gases in C60. Chem Phys Lett 275:14–18

    Article  Google Scholar 

  47. Zoleo A, Lawler RG, Lei X et al (2012) ENDOR evidence of electron-H2 interaction in a fulleride embedding H2. J Am Chem Soc 134:12881–12884

    Article  Google Scholar 

  48. Filifou V, Mamone S, Simmons S et al (2013) Probing the C60 triplet state coupling to nuclear spins inside and out. Phil Trans R SocA 371:20120475

    Article  Google Scholar 

  49. Carravetta M, Danquigny A, Mamone S et al (2007) Solid-state NMR of endohedral hydrogen-fullerene complexes. Phys Chem Chem Phys 9:4879–4894

    Article  Google Scholar 

  50. Kroto HW, Heath JR, O’Brien SC et al (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  51. Saunders M, Jiménez-Vázquez Cross RJ et al (1994) Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70. Nature 367:256–258

    Article  Google Scholar 

  52. Pasquarello A, Schlüter M, Haddon RC (1992) Ring currents in icosahedral C60. Science 257:1660–1661

    Article  Google Scholar 

  53. Pasquarello A, Schlüter M, Haddon RC (1993) Ring currents in topologically complex molecules: application to C60, C70, and their hexa-anions. Phys Rev A 47:1783–1789

    Article  Google Scholar 

  54. Bühl M (1998) The relation between endohedral chemical shifts and local aromaticities in fullerenes. Chem Eur J 4:734–739

    Article  Google Scholar 

  55. Kleinpeter E, Klod S, Koch A (2008) Endohedral and external through-space shieldings of the fullerenes C50, C60, C60 6−, C70, C70 6−—Visualization of (anti) aromaticity and their effects on the chemical shifts of encapsulated nuclei. J Org Chem 73:1498–1507

    Article  Google Scholar 

  56. Bühl M, Thiel W, Jiao H et al (1994) Helium and lithium NMR chemical shifts of endofullerene compounds: an ab initio study. J Am Chem Soc 116:6005–6006

    Article  Google Scholar 

  57. Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1995) Analysis of isomers of the higher fullerenes by 3He NMR spectroscopy. J Am Chem Soc 117:9305–9308

    Article  Google Scholar 

  58. Saunders M, Cross RJ, Jiménez-Vázquez HA et al (1996) Noble gas atoms inside fullerenes. Science 271:1693–1697

    Article  Google Scholar 

  59. Sternfeld T, Saunders M, Cross RJ et al (2003) The inside story of fullerene anions: a 3He NMR aromaticity probe. Angew Chem 115:3244–3247

    Article  Google Scholar 

  60. Saunders M, Jiménez-Vázquez HA, Bangerter BW et al (1994) 3He NMR: a powerful new tool for following fullerene chemistry. J Am Chem Soc 116:3621–3622

    Article  Google Scholar 

  61. Murata M, Ochi Y, Kitagawa T et al (2008) NMR studies of monofunctionalized fullerene cation and anion encapsulationg a H2 molecule. Chem Asian J 3:1336–1342

    Article  Google Scholar 

  62. Li Y, Lei X, Lawler RG et al (2011) Synthesis and characterization of bispyrrolidine derivatives of H2@C60: differentiation of isomers using 1H NMR spectroscopy of endohedral H2. Chem Commun 47:2282–2284

    Article  Google Scholar 

  63. Shabtai E, Weitz A, Haddon RC et al (1998) 3He NMR of He@C 6-60 and He@C 6-70 . New records for the most shielded and the most deshielded 3He inside a fullerene. J Am Chem Soc 120:6389–6393

    Article  Google Scholar 

  64. Murata M, Ochi Y, Tanabe F et al (2008) Internal magnetic fields of dianions of fullerene C60 and its cage-opened derivatives studied with encapsulated H2 as an NMR probe. Angew Chem Int Ed 47:2039–2041

    Article  Google Scholar 

  65. Trulove PC, Carlin RT, Eaton GR et al (1995) Determination of the singlet-triplet energy separation for C60 2− in DMSO by Electron Paramagnetic Resonance. J Am Chem Soc 117:6265–6272

    Article  Google Scholar 

  66. NJT947: Li Y, Lei X, Lawler RG et al (2011) Indirect 1H NMR characterization of H2@C60 nitroxide derivatives and their nuclear spin relaxation. Chem Commun 47:12527–12529

    Google Scholar 

  67. Pietzak B, Weidinger A, Dinse K-P et al (2002) Group V endohedral fullerenes: N@C60, N@C70, and P@C60. In: Akasaka T, Nagase S (eds) Endofullerenes: a new family of carbon clusters. Kluwer Academic Publishers, Doordrecht, pp 13–65

    Chapter  Google Scholar 

  68. Sears DN, Jameson CJ (2003) Calculation of the 129Xe chemical shift in Xe@C60. J Chem Phys 118:9987–9989

    Article  Google Scholar 

  69. Straka M, Lantto P, Vaara J (2008) Toward calculations of the 129Xe chemical shift in Xe@C60 at experimental conditions: relativity, correlation, and dynamics. J Phys Chem A 112:2658–2668

    Article  Google Scholar 

  70. Murphy TA, Pawlik T, Weidinger A et al (1996) Observation of atomlike nitrogen in nitrogen-implanted solid C60. Phys Rev Lett 77:1075–1078

    Article  Google Scholar 

  71. Knapp C, Weiden N, Käss H et al (1998) Electron paramagnetic resonance study of atomic phosphorus encapsulated in [60]fullerene. Mol Phys 95:999–1004

    Article  Google Scholar 

  72. Kiefl RF, Duty TL, Schneider JW et al (1992) Evidence for endohedral muonium in KxC60 and consequences for electronic structure. Phys Rev Lett 69:2005–2008

    Article  Google Scholar 

  73. Kiefl RF, Warren JB, Marshall GM et al (1981) Muonium in the condensed phases of Ar, Kr, and Xe. J Chem Phys 74:308–313

    Article  Google Scholar 

  74. Sternfeld T, Hoffman RE, Saunders M et al (2002) Two helium atoms inside fullerenes: probing the internal magnetic field in C60 6− and C70 6−. J Am Chem Soc 124:8786–8787

    Article  Google Scholar 

  75. Turro NJ, Chen JY-C, Sartori E et al (2010) The spin chemistry and magnetic resonance of H2@C60. From the Pauli Principle to trapping a long lived nuclear excited spin state inside a buckyball. Acc Chem Res 43:225–345

    Article  Google Scholar 

  76. Mamone S, Chen JY-C, Bhattacharyya et al (2011) Theory and spectroscopy of an incarcerated quantum rotor: The infrared spectroscopy, inelastic neutron scattering and nuclear magnetic resonance of H2@C60 at cryogenic temperature. Coord Chem Rev 255:938–948

    Article  Google Scholar 

  77. Beduz C, Carravetta M, Chen JY-C et al (2012) Quantum rotation of ortho and para-water encapsulated in a fullerene cage. PNAS 109:12894–12898

    Article  Google Scholar 

  78. Levitt MH (2013) Spectroscopy of light-molecule endofullerenes. Phil Trans R Soc A 371:20120429

    Article  Google Scholar 

  79. Levitt MH, Horsewill AJ (eds) (2013) Nanolaboratories: physics and chemistry of small-molecule endofullerenes. Phil Trans R Soc A 371(1998)

    Google Scholar 

  80. Mamone S, Ge Min, Hüvonen D et al (2009) Rotor in a cage: infrared spectroscopy of an endohedral hydrogen-fullerene complex. J Chem Phys 130:081103

    Article  Google Scholar 

  81. Ge M, Nagel U, Hüvonen D et al (2011) Interaction potential and infrared absorption of endohedral H2 in C60. J Chem Phys 134:054507

    Article  Google Scholar 

  82. Ge M, Nagel U, Hüvonen D et al (2011) Infrared spectroscopy of endohedral HD and D2 in C60. J Chem Phys 135:114511

    Article  Google Scholar 

  83. Rõõm T, Peedu L, Ge M et al (2013) Infrared spectroscopy of small-molecule fullerenes. Phil Trans R Soc A 371:20110631

    Article  Google Scholar 

  84. Herzberg G (1950) Molecular spectra and molecular structure I. Spectra of diatomic molecules, 2nd edn. Van Nostrand, Princeton

    Google Scholar 

  85. Kohama Y, Rachi T, Jing J et al (2009) Rotational sublevels of an ortho-hydrogen molecule encapsulated in an isotropic C60 cage. Phys Rev Lett 103:073001

    Article  Google Scholar 

  86. Schettino V, Pagliai M, Ciabini L et al (2001) The vibrational spectrum of fullrene C60. J Phys Chem A 105:11192–11196

    Article  Google Scholar 

  87. Farkas A (1935) Orthohydrogen, parahydrogen and heavy hydrogen. Cambridge University Press, London

    Google Scholar 

  88. Chen JY-C, Li Y, Frunzi M et al (2013) Nuclear spin isomers of guest molecules in H2@C60, H2O@C60 and other fullerenes. Phil Trans R Soc A 371:20110628

    Article  Google Scholar 

  89. Horsewill AJ, Panesar KS, Rols S et al (2009) Quantum translator-rotator: Inelastic neutron scattering of dihydrogen molecule trapped inside anisotropic fullerene cages. Phy Rev Lett 102:013001

    Article  Google Scholar 

  90. Horsewill AJ, Rols S, Johnson MR et al (2010) Inelastic neutron scattering of a quantum translator-rotator in a closed fullerene cage: Isotope effects and translation-rotation coupling in H2C60 and HD@C60. Phys Rev B 82:081410(R)

    Article  Google Scholar 

  91. Horsewill AJ, Goh K, Rols S et al (2013) Quantum rotation and translation of hydrogen molecules encapsulated inside C60: temperature dependence of inelastic neutron scattering spectra. Phil Trans R Soc A 371:20110627

    Article  Google Scholar 

  92. Horsewill AJ, Panear KS, Rols S (2012) Inelastic neutron scattering investigations of the quantum molecular dynamics of a H2 molecule entrapped inside a fullerene cage. Phys Rev B 85:205440

    Article  Google Scholar 

  93. Goh KSK, Jiménez-Ruiz M, Johnson MR et al (2014) Symmetry-breaking in the endofullerene H2O@C60 revealed in the quantum dynamics of ortho and para-water: a neutron scattering investigation. Phys Chem Chem Phys 16:21330–21339

    Article  Google Scholar 

  94. Xu M, Jiménez-Ruiz M, Johnson MR et al (2014) Confirming a predicted selection rule in inelastic neutron scattering spectroscopy: the quantum translator-rotator H2 entrapped inside C60. Phys Rev Lett 113:123001

    Article  Google Scholar 

  95. Xu M, Sebastianelli F, Bačić Z (2008) Quantum dynamics of coupled translational and rotational motions of H2 inside C60. J Chem Phys 128:011101

    Article  Google Scholar 

  96. Xu M, Sebastianelli F, Bačić Z et al (2008) H2, HD, and D2 inside C60: coupled translation–rotation eigenstates of the endohedral molecules from quantum five-dimensional calculations. J Chem Phys 129:064313

    Article  Google Scholar 

  97. Xu M, Sebastianelli F, Gibbons BR et al (2009) Coupled translation-rotation eigenstates of H2 in C60 and C70 on the spectroscopically optimized interaction potential: effects of cage anisotropy on the energy level structure and assignments. J Chem Phys 130:224306

    Article  Google Scholar 

  98. Sebastianelli F, Xu M, Bačić Z et al (2010) Hydrogen molecules inside fullerene C70: quantum dynamics, energetics, maximum occupancy, and comparison with C60. J Am Chem Soc 132:9826–9832

    Article  Google Scholar 

  99. Ye S, Xu M, Bačić Z et al (2010) Quantum dynamics of a hydrogen molecule inside an anisotropic open-cage fullerene: coupled translation-rotation eigenstates and comparison with inelastic neutron scattering spectroscopy. J Phys Chem A 114:9936–9947

    Article  Google Scholar 

  100. Xu M, Ye S, Powers A et al (2013) Inelastic neutron scattering spectrum of H2@C60 and its temperature dependence decoded using rigorous quantum calculations and a new selection rule. J Chem Phys 139:064309

    Article  Google Scholar 

  101. Xu M, Ye S, Lawler R et al (2013) HD in C60: theoretical prediction of the inelastic neutron scattering spectrum and its temperature dependence. Phil Trans R Soc A 371:20110630

    Article  Google Scholar 

  102. Cross RJ (2001) Does H2 rotate freely inside fullerenes? J Phys Chem A 105:6943–6944

    Article  Google Scholar 

  103. Cross RJ (2008) Vibration-rotation spectroscopy of molecules trapped inside C60. J Phys Chem A 112:7152–7156

    Article  Google Scholar 

  104. Felker PM (2013) Near-orbital/configuration-interaction study of coupled translation-rotation states in (H2)2@C70. J Chem Phys 138:044309

    Article  Google Scholar 

  105. Mondelo-Martell M, Huarte-Larranago F (2015) 5D quantum dynamics of the H2@SWT system: quantitative study of the rotational-translational coupling. J Chem Phys 142:084304

    Article  Google Scholar 

  106. Sebastianelli F, Xu M, Kanan DK et al (2007) One and two hydrogen molecules in the large cage of the structure II clathrate hydrate: quantum translation-rotation dynamics close to the cage wall. J Phys Chem A 111:6115–6121

    Article  Google Scholar 

  107. Sebastianelli R, Xu M, Bacic Z (2008) Quantum dynamics of small H2 and D2 clusters in the large cage of structure II clathrate hydrate: energetics, occupancy, and vibrationally averaged cluster structures. J Chem Phys 129:244706

    Article  Google Scholar 

  108. Felker PM (2013) Fully quantal calculation of H2 translation-rotation in (H2)4@51264 clathrate inclusion compounds. J Chem Phys 138:174306

    Article  Google Scholar 

  109. Felker PM (2014) Fully quantal calculation of H2 translation-rotation states in the (p-H2)2@51264 clathrate hydrate inclusion compound. J Chem Phys 141:184305

    Article  Google Scholar 

  110. Ye S, Xu M, FitzGerald S et al (2013) H2 in solid C60: coupled translation-rotation eigenstates in the octahedral site from quantum five-dimensional calculations. J Chem Phys 138:244707

    Article  Google Scholar 

  111. Farimani AB, Wu Y, Aluru NR (2013) Rotational motion of a single water molecule in a buckyball. Phys Chem Chem Phys 15:17993–18000

    Article  Google Scholar 

  112. Bug ALR, Wilson A, Voth GA (1992) Nuclear vibrational dynamics of a neon atom in C60. J Phys Chem 96:7864–7869

    Article  Google Scholar 

  113. Saunders M, Jiménez-Vázquez H, Cross RJ et al (1993) Stable compounds of helium and neon: He@C60 and Ne@C60. Science 259:1428–1430

    Article  Google Scholar 

  114. Laskin J, Peres T, Lifshitz C et al (1998) An artificial molecule of Ne2 inside C70. Chem Phys Lett 285:7–9

    Article  Google Scholar 

  115. Jiménez-Vázquez HA, Cross RJ (1996) Equilibrium constants for noble-gas fullerene compounds. J Chem Phys 104:5589–5593

    Article  Google Scholar 

  116. Carravetta M, Murata Y, Murata M et al (2004) Solid-state NMR spectroscopy of molecular hydrogen trapped inside an open-cage fullerene. J Am Chem Soc 126:4092–4093

    Article  Google Scholar 

  117. Carravetta M, Johannessen OG, Levitt MH (2006) Cryogenic NMR spectroscopy of endohedral hydrogen-fullerene complexes. J Chem Phys 124:104507

    Article  Google Scholar 

  118. Tomaselli M, Meier BH (2001) Rotational-state selective nuclear magnetic resonance spectra of hydrogen in a molecular trap. J Chem Phys 115:11017–11020

    Article  Google Scholar 

  119. Tomaselli M (2003) Dynamics of diatomic molecules confined in a chemical trap I. Nuclear magnetic resonance experiments on hydrogen in solid C60. Mol Phys 101:3029–3051

    Article  Google Scholar 

  120. Mamone S, Consistrè M, Carignani E et al (2014) Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance. J Chem Phys 140:194306

    Article  Google Scholar 

  121. Carravetta M, Danquigny A, Mamone S et al (2007) Solid-state NMR of endohedral hydrogen-fullerene complexes. Phys Chem Chem Phys 9:4879–4894

    Article  Google Scholar 

  122. Mamone S, Consistrè M, Heinmaa I et al (2013) Nuclear magnetic resonance of hydrogen molecules trapped inside C70 fullerene cages. Chem Phys Chem 14:3121–3130

    Article  Google Scholar 

  123. Consistrè M, Mamone S, Denning M et al (2013) Anisotropic nuclear spin interactions in H2O@C60 determined by solid-state NMR. Phil Trans R Soc A 371:20120102

    Article  Google Scholar 

  124. Sartori E, Ruzzi M, Turro NJ et al (2006) Nuclear relaxation of H2 and H2@C60 in organic solvents. J Am Chem Soc 128:14752–14753

    Article  Google Scholar 

  125. Chen JY-C, Martí AA, Turro NJ et al (2010) Comparative NMR properties of H2 and HD in toluene-d 8 and in H2/HD@C60. J Phys Chem B 114:14689–14695

    Article  Google Scholar 

  126. Li Y, Chen JY-C, Lei X et al (2012) Comparison of nuclear spin relaxation of H2O@C60 and H2@C60 and their nitroxide derivatives. J Phys Chem Lett 3:1165–1168

    Article  Google Scholar 

  127. Chen JY-C (2011) Spin chemistry of guest@host systems: H2@C60 and nitroxide@octa acid. Dissertation, Columbia University

    Google Scholar 

  128. Sartori E, Ruzzi M, Turro NJ et al (2008) Paramagnet enhanced nuclear relaxation of H2 in organic solvents and H2@C60. J Am Chem Soc 130:2221–2225

    Article  Google Scholar 

  129. Frunzi M, Lei X, Murata Y et al (2010) Magnetic interaction of solution-state paramagnets with encapsulated H2O and H2. J Phys Chem Lett 1:1420–1422

    Article  Google Scholar 

  130. Li Y, Lei X, Chen JY-C et al (2013) Paramagnet enhanced nuclear spin relaxation in H2O@open-C60 and H2@open-C60. Org Lett 15:4746–4749

    Article  Google Scholar 

  131. Li Y, Lei X, Lawler RG et al (2010) Distance-dependent paramagnet-enhanced nuclear spin relaxation of H2@C60 derivatives covalently linked to a nitroxide radical. J Phys Chem Lett 1:2135–2138

    Article  Google Scholar 

  132. Rastrelli F, Frezzato D, Lawler RG et al (2013) Predicting the paramagnet-enhanced NMR relaxation of H2 encapsulated in endofullerene nitroxides by density-functional theory calculations. Phil Trans R Soc A 371:20110634

    Article  Google Scholar 

  133. Garbuio L, Li Y, Antonello S et al (2014) Interaction of H2@C60 and nitroxide through conformationally constrained peptide bridges. Photochem Photobiol 90:439–447

    Article  Google Scholar 

  134. Lloyd LS, Asghar A, Burns MJ et al (2014) Hyperpolarizatoin through reversible interactions with parahydrogen. Catal Sci Technol 4:3544–3554

    Article  Google Scholar 

  135. Graafen D, Ebert S, Neudert O et al (2014) 1H NMR spectroscopy and MR imaging with hyperpolarized substances. Ann Rept NMR Spectros 82:167–215

    Article  Google Scholar 

  136. Chen JY-C, Li Y, Frunzi M et al (2013) Nuclear spin isomers of guest molecules in H2@C60, H2O@C60 and other fullerenes. Phil Trans R Soc A 371:20110628

    Article  Google Scholar 

  137. Wigner E (1933) Über die paramagnetische umwandlung von para-orthowasserstoff III. Zeit fur Physik Chem B 23:28–32

    Google Scholar 

  138. Atkins PW, Clugston MJ (1974) Ortho-para hydrogen conversion in paramagnetic solutions. Mol Phys 27:1619–1631

    Article  Google Scholar 

  139. Li Y, Chen JY-C, Lei X et al (2012) Comparison of nuclear spin relaxation of H2O@C60 and H2@C60 and their nitroxide derivatives. J Phys Chem Lett 3:1165–1168

    Article  Google Scholar 

  140. Frunzi M, Jockusch S, Chen JY-C et al (2011) A photochemical on-off switch for tuning the equilibrium mixture of H2 nuclear spin isomers as a function of temperature. J Am Chem Soc 133:14232–14235

    Article  Google Scholar 

  141. Li Y, Lei X, Jockusch S et al (2010) A magnetic switch for spin-catalyzed interconversion of nuclear spin isomers. J Am Chem Soc 132:4042–4043

    Article  Google Scholar 

  142. Li Y, Lei X, Lawler RG et al (2011) Distance-dependent para-H2 to ortho-H2 conversion in H2@C60 derivatives covalently linked to a nitroxide radical. J Phys Chem Lett 2:741–744

    Article  Google Scholar 

  143. Sartori E, Ruzzi M, Lawler RG et al (2008) Nitroxide paramagnet-induced para-ortho conversion and nuclear spin relaxation of H2 in organic solvents. J Am Chem Soc 130:12752–12756

    Article  Google Scholar 

  144. Krachmalnicoff A, Bounds R, Mamone S et al (2015) Synthesis and characterisation of an open-cage fullerene encapsulating hydrogen fluoride. Chem Commun 51:4993–4996

    Article  Google Scholar 

  145. Garbacz P, Jackowski K, Makulski W et al (2012) Nuclear magnetic shielding for hydrogen in selected isolated molecules. J Phys Chem A 116:11896–11904

    Article  Google Scholar 

  146. Hindermann DK, Cornwell CD (1968) Fluorine and proton NMR study of gaseous hydrogen fluoride. J Chem Phys 48:2017–2025

    Article  Google Scholar 

  147. Aoyagi S, Nishibori E, Sawa H (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2:678–683

    Article  Google Scholar 

  148. Whitener KE Jr, Cross RJ, Saunders M et al (2009) Methane in an open-cage [60] fullerene. J Am Chem Soc 131:6338–6339

    Article  Google Scholar 

  149. Whitener KE Jr, Frunzi M, Iwamatsu S-I et al (2008) Putting ammonia into a chemically opened fullerene. J Am Chem Soc 130:13996–13999

    Article  Google Scholar 

  150. Iwamatsu S-I, Stanisky CM, Cross RJ et al (2006) Carbon monoxide inside an open-cage fullerene. Angew Chem Int Ed 45:5337–5340

    Article  Google Scholar 

  151. Smith AB III, Strongin RM, Brard L et al (1994) Synthesis and 3He NMR studies of C60 and C70 epoxide, cyclopropane, and annulene derivatives containing endohedral helium. J Am Chem Soc 116:10831–10832

    Article  Google Scholar 

  152. Morinaka Y, Tanabe F, Murata M et al (2010) Rational synthesis, enrichment, and 13C NMR spectra of endohedral C60 and C70 encapsulating a helium atom. Chem Commun 46:4532–4534

    Article  Google Scholar 

  153. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  Google Scholar 

Download references

Acknowledgements

It was a pleasure and a privilege to be part of the worldwide endofullerene collaboration established by Professor Nicholas Turro of Columbia University. The work there, until his untimely death in 2012, spanned nearly the entire period of small-molecule endofullerene research up to the present. This review is dedicated to his memory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald G. Lawler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lawler, R.G. (2017). Nonmetallic Endofullerenes and the Endohedral Environment: Structure, Dynamics, and Spin Chemistry. In: Popov, A. (eds) Endohedral Fullerenes: Electron Transfer and Spin. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47049-8_12

Download citation

Publish with us

Policies and ethics