Skip to main content

Synthesis and Molecular Structures of Endohedral Fullerenes

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The chapter gives an introduction into the field of endohedral fullerenes and describes development in the synthesis and molecular structure determination of these compounds. An overview of elements capable of being encapsulated within the fullerene cage is given. Different types of endohedral metallofullerenes and clusterfullerenes as well as peculiarities in the carbon cage isomerism caused by encapsulated species are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Heath JR, O’Brien SC, Zhang Q et al (1985) Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 107(25):7779–7780

    Article  Google Scholar 

  2. Cioslowski J, Fleischmann ED (1991) Endohedral complexes—atoms and ions inside the C60 Cage. J Chem Phys 94(5):3730–3734

    Article  Google Scholar 

  3. Weiske T, Bohme DK, Hrusak J et al (1991) Endohedral cluster compounds—inclusion of helium within C60 + and C70 + through collision experiments. Angew Chem-Int Edit Engl 30(7):884–886

    Google Scholar 

  4. Kratschmer W, Lamb LD, Fostiropoulos K et al (1990) Solid C60—a new form of carbon. Nature 347(6291):354–358

    Article  Google Scholar 

  5. Chai Y, Guo T, Jin CM et al (1991) Fullerenes with metals inside. J Phys Chem 95(20):7564–7568

    Article  Google Scholar 

  6. Alvarez MM, Gillan EG, Holczer K et al (1991) La2C80—a soluble dimetallofullerene. J Phys Chem 95(26):10561–10563

    Article  Google Scholar 

  7. Johnson RD, Devries MS, Salem J et al (1992) Electron-paramagnetic resonance studies of lanthanum-containing C82. Nature 355(6357):239–240

    Article  Google Scholar 

  8. Dunk PW, Kaiser NK, Hendrickson CL et al (2012) Closed network growth of fullerenes. Nat Commun 3:855

    Article  Google Scholar 

  9. Dunk PW, Mulet-Gas M, Nakanishi Y et al (2014) Bottom-up formation of endohedral mono-metallofullerenes is directed by charge transfer. Nat Commun 5:5844

    Article  Google Scholar 

  10. Tellgmann R, Krawez N, Lin SH et al (1996) Endohedral fullerene production. Nature 382(6590):407–408

    Article  Google Scholar 

  11. Aoyagi S, Nishibori E, Sawa H et al (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2(8):678–683

    Article  Google Scholar 

  12. Wang CR, Kai T, Tomiyama T et al (2001) A scandium carbide endohedral metallofullerene: (Sc2C2)@C84. Angew Chem-Int Edit 40(2):397–399

    Article  Google Scholar 

  13. Stevenson S, Rice G, Glass T et al (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401(6748):55–57

    Article  Google Scholar 

  14. Dunsch L, Krause M, Noack J et al (2004) Endohedral nitride cluster fullerenes - Formation and spectroscopic analysis of L3−x MxN@C2n (0 ≤ x ≤3; n = 39,40). J Phys Chem Solids 65(2–3):309–315

    Article  Google Scholar 

  15. Liu F, Guan J, Wei T et al (2013) A series of inorganic solid nitrogen sources for the synthesis of metal nitride clusterfullerenes: the dependence of production yield on the oxidation state of nitrogen and counter ion. Inorg Chem 52(7):3814–3822

    Article  Google Scholar 

  16. Yang S, Zhang L, Zhang W et al (2010) A facile route to metal nitride clusterfullerenes by using guanidinium salts: a selective organic solid as the nitrogen source. Chem-Eur J 16(41):12398–12405

    Article  Google Scholar 

  17. Svitova A, Braun K, Popov AA et al (2012) A platform for specific delivery of lanthanide-scandium mixed-metal cluster fullerenes into target cells. Chem Open 1(5):207–210

    Google Scholar 

  18. Yang S, Liu F, Chen C et al (2011) Fullerenes encaging metal clusters-clusterfullerenes. Chem Commun 47(43):11822–11839

    Article  Google Scholar 

  19. Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113(8):5989–6113

    Article  Google Scholar 

  20. Lu X, Feng L, Akasaka T et al (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41(23):7723–7760

    Article  Google Scholar 

  21. Stevenson S, Thompson MC, Coumbe HL et al (2007) Chemically adjusting plasma temperature, energy, and reactivity (CAPTEAR) method using NOx and combustion for selective synthesis of Sc3N@C80 metallic nitride fullerenes. J Am Chem Soc 129(51):16257–16262

    Article  Google Scholar 

  22. Junghans K, Rosenkranz M, Popov AA (2016) Sc3CH@C80: selective 13C enrichment of the central carbon atom. Chem Commun 52:6561–6564

    Article  Google Scholar 

  23. Junghans K, Schlesier C, Kostanyan A et al (2015) Methane as a selectivity booster in the arc-discharge synthesis of endohedral fullerenes: selective synthesis of the single-molecule magnet Dy2TiC@C80 and its congener Dy2TiC2@C80. Angew Chem-Int Edit Engl 54(45):13411–13415

    Article  Google Scholar 

  24. Feng Y, Wang T, Wu J et al (2014) Electron-spin excitation by implanting hydrogen into metallofullerene: the synthesis and spectroscopic characterization of Sc4C2H@I h -C80. Chem Commun 50(81):12166–12168

    Article  Google Scholar 

  25. Zhang M, Hao Y, Li X et al (2014) Facile synthesis of an extensive family of Sc2O@C2n (n = 35-47) and chemical insight into the smallest member of Sc2O@C2(7892)-C70. J Phys Chem C 118(49):28883–28889

    Article  Google Scholar 

  26. Chen N, Chaur MN, Moore C et al (2010) Synthesis of a new endohedral fullerene family, Sc2S@C2n (n = 40-50) by the introduction of SO2. Chem Commun 46(26):4818–4820

    Article  Google Scholar 

  27. Dunsch L, Yang S, Zhang L et al (2010) Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes. J Am Chem Soc 132(15):5413–5421

    Article  Google Scholar 

  28. Yang SF, Kalbac M, Popov A et al (2006) A facile route to the non-IPR fullerene Sc3N@C68: synthesis, spectroscopic characterization, and density functional theory computations (IPR = isolated pentagon rule). Chem-Eur J 12(30):7856–7863

    Article  Google Scholar 

  29. Bolskar RD, Alford JM (2003) Chemical oxidation of endohedral metallofullerenes: identification and separation of distinct classes. Chem Commun 11:1292–1293

    Article  Google Scholar 

  30. Tsuchiya T, Wakahara T, Shirakura S et al (2004) Reduction of endohedral metallofullerenes: a convenient method for isolation. Chem Mat 16(22):4343–4346

    Article  Google Scholar 

  31. Ge ZX, Duchamp JC, Cai T et al (2005) Purification of endohedral trimetallic nitride fullerenes in a single, facile step. J Am Chem Soc 127(46):16292–16298

    Article  Google Scholar 

  32. Stevenson S, Harich K, Yu H et al (2006) Nonchromatographic “stir and filter approach” (SAFA) for isolating Sc3N@C80 metallofullerenes. J Am Chem Soc 128(27):8829–8835

    Article  Google Scholar 

  33. Stevenson S, Mackey MA, Pickens JE et al (2009) Selective complexation and reactivity of metallic nitride and oxometallic fullerenes with lewis acids and use as an effective purification method. Inorg Chem 48(24):11685–11690

    Article  Google Scholar 

  34. Akiyama K, Hamano T, Nakanishi Y et al (2012) Non-HPLC rapid separation of metallofullerenes and empty cages with TiCl4 lewis acid. J Am Chem Soc 134(23):9762–9767

    Article  Google Scholar 

  35. Cerón MR, Li F-F, Echegoyen L (2013) An efficient method to separate Sc3N@C80 I h and D 5h isomers and Sc3N@C78 by selective oxidation with acetylferrocenium [Fe(COCH3C5H4)Cp]+. Chem-Eur J 19(23):7410–7415

    Article  Google Scholar 

  36. Yang SF, Popov AA, Dunsch L (2008) Large mixed metal nitride clusters encapsulated in a small cage: the confinement of the C68-based clusterfullerenes. Chem Commun 2885–2887

    Google Scholar 

  37. Campbell EEB, Tellgmann R, Krawez N et al (1997) Production and LDMS characterisation of endohedral alkali-fullerene films. J Phys Chem Solids 58(11):1763–1769

    Article  Google Scholar 

  38. Gromov A, Kratschmer W, Krawez N et al (1997) Extraction and HPLC purification of Li@C60/70. Chem Commun 20:2003–2004

    Article  Google Scholar 

  39. Kubozono Y, Ohta T, Hayashibara T et al (1995) Preparation and extraction of Ca@C60. Chem Lett 6:457–458

    Article  Google Scholar 

  40. Xu ZD, Nakane T, Shinohara H (1996) Production and isolation of Ca@C82 (I-IV) and Ca@C84 (I, II) metallofullerenes. J Am Chem Soc 118(45):11309–11310

    Article  Google Scholar 

  41. John T, Dennis S, Shinohara H (1998) Production, isolation, and characterization of group-2 metal-containing endohedral metallofullerenes. Appl Phys A-Mater Sci Process 66(3):243–247

    Article  Google Scholar 

  42. Kuran P, Krause M, Bartl A et al (1998) Preparation, isolation and characterisation of Eu@C74: the first isolated europium endohedral fullerene. Chem Phys Lett 292(4–6):580–586

    Article  Google Scholar 

  43. Kirbach U, Dunsch L (1996) The existence of stable Tm@C82 isomers. Angew Chem-Int Edit Engl 35(20):2380–2383

    Article  Google Scholar 

  44. Xu JX, Lu X, Zhou XH et al (2004) Synthesis, isolation, and spectroscopic characterization of ytterbium-containing metallofullerenes. Chem Mat 16(15):2959–2964

    Article  Google Scholar 

  45. Okazaki T, Lian YF, Gu ZN et al (2000) Isolation and spectroscopic characterization of Sm-containing metallofullerenes. Chem Phys Lett 320(5–6):435–440

    Article  Google Scholar 

  46. Yang H, Jin H, Hong B et al (2011) Large endohedral fullerenes containing two metal ions, Sm2@D 2(35)-C88, Sm2@C 1(21)-C90, and Sm2@D 3(85)-C92, and their relationship to endohedral fullerenes containing two gadolinium ions. J Am Chem Soc 133(42):16911–16919

    Article  Google Scholar 

  47. Mercado BQ, Jiang A, Yang H et al (2009) Isolation and structural characterization of the molecular nanocapsule Sm2@D 3d (822)-C104. Angew Chem-Int Edit Engl 48(48):9114–9116

    Article  Google Scholar 

  48. Xu W, Feng L, Calvaresi M et al (2013) An experimentally observed trimetallofullerene Sm3@I h -C80: Encapsulation of three metal atoms in a cage without a nonmetallic mediator. J Am Chem Soc 135(11):4187–4190

    Article  Google Scholar 

  49. Guo T, Diener MD, Chai Y et al (1992) Uranium stabilization of C28—a tetravalent fullerene. Science 257(5077):1661–1664

    Article  Google Scholar 

  50. Dunk PW, Kaiser NK, Mulet-Gas M et al (2012) The smallest stable fullerene, M@C28 (M = Ti, Zr, U): stabilization and growth from carbon vapor. J Am Chem Soc 134(22):9380–9389

    Article  Google Scholar 

  51. Cao BP, Hasegawa M, Okada K et al (2001) EELS and 13C NMR characterization of pure Ti2@C80 metallofullerene. J Am Chem Soc 123(39):9679–9680

    Article  Google Scholar 

  52. Cao BP, Suenaga K, Okazaki T et al (2002) Production, isolation, and EELS characterization of Ti2@C84 dititanium metallofullerenes. J Phys Chem B 106(36):9295–9298

    Article  Google Scholar 

  53. Tan K, Lu X (2005) Ti2C80 is more likely a titanium carbide endohedral metallofullerene (Ti2C2)@C78. Chem Commun 35:4444–4446

    Article  Google Scholar 

  54. Sato Y, Yumura T, Suenaga K et al (2006) Direct imaging of intracage structure in titanium-carbide endohedral metallofullerene. Phys Rev B 73(19):193401

    Article  Google Scholar 

  55. Li F-F, Chen N, Mulet-Gas M et al (2013) Ti2S@D 3h (24109)-C78: a sulfide cluster metallofullerene containing only transition metals inside the cage. Chem Sci 4(9):3404–3410

    Article  Google Scholar 

  56. Yang S, Chen C, Popov A et al (2009) An endohedral titanium(III) in a clusterfullerene: putting a non-group-III metal nitride into the C80-I h fullerene cage. Chem Commun 6391–6393

    Google Scholar 

  57. Chen C, Liu F, Li S et al (2012) Titanium/yttrium mixed metal nitride clusterfullerene TiY2N@C80: synthesis, isolation, and effect of the group-III metal. Inorg Chem 51(5):3039–3045

    Article  Google Scholar 

  58. Junghans K, Ghiassi KB, Samoylova NA et al (2016) Synthesis and isolation of the titanium-scandium endohedral fullerenes—Sc2TiC@I h -C80, Sc2TiC@D 5h -C80, and Sc2TiC2@I h -C80: metal size tuning of the TiIV/TiIII redox potentials. Chem-Eur J 22(37):13098–13107

    Article  Google Scholar 

  59. Svitova AL, Ghiassi K, Schlesier C et al (2014) Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage. Nat Commun 5 3568

    Google Scholar 

  60. Sueki K, Kikuchi K, Akiyama K et al (1999) Formation of metallofullerenes with higher group elements. Chem Phys Lett 300(1–2):140–144

    Article  Google Scholar 

  61. Akiyama K, Sueki K, Kodama T et al (2000) New fullerenes of a group IV element: Hf metallofullerenes. Chem Phys Lett 317(3–5):490–496

    Article  Google Scholar 

  62. Wei T, Wang S, Lu X et al (2016) Entrapping a group-VB transition metal, vanadium, within an endohedral metallofullerene: V x Sc3–x N@I h -C80 (x = 1, 2). J Am Chem Soc 138(1):207–214

    Article  Google Scholar 

  63. Roy D, Tripathi NK, Ram K et al (2009) Synthesis of germanium encapsulated fullerene. Solid State Commun 149(31–32):1244–1247

    Article  Google Scholar 

  64. Akiyama K, Zhao YL, Sueki K et al (2001) Isolation and characterization of light actinide metallofullerenes. J Am Chem Soc 123(1):181–182

    Article  Google Scholar 

  65. Akiyama K, Sueki K, Tsukada K et al (2002) Study of metallofullerenes encapsulating actinides. J Nucl Radiochem Sci 3(1):151–154

    Article  Google Scholar 

  66. Akiyama K, Sueki K, Haba H et al (2003) Production and characterization of actinide metallofullerenes. J Radioanal Nucl Chem 255(1):155–158

    Article  Google Scholar 

  67. Akiyama K, Haba H, Tsukada K et al (2009) A metallofullerene that encapsulates 225Ac. J Radioanal Nucl Chem 280(2):329–331

    Article  Google Scholar 

  68. Ross MM, Callahan JH (1991) Formation and characterization of C60He+. J Phys Chem 95(15):5720–5723

    Article  Google Scholar 

  69. Caldwell KA, Giblin DE, Gross ML (1992) High-energy collisions of fullerene radical cations with target gases—capture of the target gas and charge stripping of C-60(.+), C-70(.+), and C-84(.+). J Am Chem Soc 114(10):3743–3756

    Article  Google Scholar 

  70. Wan Z, Christian JF, Anderson SL (1992) Ne++C60: Collision energy and impact parameter dependence for endohedral complex formation, fragmentation, and charge transfer. J Chem Phys 96(4):3344–3347

    Article  Google Scholar 

  71. Mosely J, Cooper H, Gallagher R et al (1995) Letter: target capture of argon by fullerene radical cations in high-energy collisions. Eur J Mass Spectrom 1(5):501–502

    Article  Google Scholar 

  72. Wan ZM, Christian JF, Anderson SL (1992) Collision of Li+ and Na+ with C60 insertion, fragmentation, and thermionic emission. Phys Rev Lett 69(9):1352–1355

    Google Scholar 

  73. Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1993) Stable compounds of helium and neon—He@C60 and Ne@C60. Science 259(5100):1428–1430

    Article  Google Scholar 

  74. Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1994) Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high-pressure. J Am Chem Soc 116(5):2193–2194

    Article  Google Scholar 

  75. Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1994) Probing the interior of fullerenes by 3He NMR-spectroscopy of endohedral 3He@C60 and 3He@C70. Nature 367(6460):256–258

    Article  Google Scholar 

  76. Saunders M, Cross RJ, Jiménez-Vázquez HA et al (1996) Noble gas atoms inside fullerenes. Science 271(5256):1693–1697

    Article  Google Scholar 

  77. Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1995) Analysis of isomers of the higher fullerenes by 3He NMR-spectroscopy. J Am Chem Soc 117(36):9305–9308

    Article  Google Scholar 

  78. DiCamillo BA, Hettich RL, Guiochon G et al (1996) Enrichment and characterization of a noble gas fullerene: Ar@C60. J Phys Chem 100(22):9197–9201

    Article  Google Scholar 

  79. Yamamoto K, Saunders M, Khong A et al (1999) Isolation and spectral properties of Kr@C-60, a stable van der Waals molecule. J Am Chem Soc 121(7):1591–1596

    Article  Google Scholar 

  80. Lee HM, Olmstead MM, Suetsuna T et al (2002) Crystallographic characterization of Kr@C60 in (0.09Kr@C60/0.91C60)·{NiII(OEP)}·2C6H6. Chem Commun 13:1352–1353

    Article  Google Scholar 

  81. Syamala MS, Cross RJ, Saunders M (2002) Xe-129 NMR spectrum of xenon inside C-60. J Am Chem Soc 124(21):6216–6219

    Article  Google Scholar 

  82. Khong A, Jimenez-Vazquez HA, Saunders M et al (1998) An NMR study of He2 inside C70. J Am Chem Soc 120(25):6380–6383

    Article  Google Scholar 

  83. Sternfeld T, Hoffman RE, Saunders M et al (2002) Two helium atoms inside fullerenes: probing the internal magnetic field in C 6-60 and C 6-70 . J Am Chem Soc 124(30):8786–8787

    Article  Google Scholar 

  84. Laskin J, Peres T, Lifshitz C et al (1998) An artificial molecule of Ne2 inside C70. Chem Phys Lett 285(1–2):7–9

    Article  Google Scholar 

  85. Peres T, Cao B, Cui W et al (2001) Some new diatomic molecule containing endohedral fullerenes. Int J Mass Spectrom 210–211:241–247

    Article  Google Scholar 

  86. Peng RF, Chu SJ, Huang YM et al (2009) Preparation of He@C60 and He2@C60 by an explosive method. J Mater Chem 19:3602–3605

    Article  Google Scholar 

  87. Suetsuna T, Dragoe N, Harneit W et al (2002) Separation of N2@C60 and N@C60. Chem-Eur J 8(22):5079–5083

    Article  Google Scholar 

  88. Murphy TA, Pawlik T, Weidinger A et al (1996) Observation of atomlike nitrogen in nitrogen-implanted solid C-60. Phys Rev Lett 77(6):1075–1078

    Article  Google Scholar 

  89. Weidinger A, Waiblinger M, Pietzak B et al (1998) Atomic nitrogen in C60: N@C60. Appl Phys A-Mater Sci Process 66(3):287–292

    Article  Google Scholar 

  90. Jakes P, Dinse KP, Meyer C et al (2003) Purification and optical spectroscopy of N@C60. Phys Chem Chem Phys 5(19):4080–4083

    Article  Google Scholar 

  91. Dietel E, Hirsch A, Pietzak B et al (1999) Atomic nitrogen encapsulated in fullerenes: effects of cage variations. J Am Chem Soc 121(11):2432–2437

    Article  Google Scholar 

  92. Knapp C, Weiden N, Kass K et al (1998) Electron paramagnetic resonance study of atomic phosphorus encapsulated in [60]fullerene. Mol Phys 95(5):999–1004

    Article  Google Scholar 

  93. Ito S, Shimotani H, Takagi H et al (2008) On the synthesis conditions of N and N2 endohedral fullerenes. Fullerenes Nanotubes Carbon Nanostruct 16(3):206–213

    Article  Google Scholar 

  94. Komatsu K, Murata M, Murata Y (2005) Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 307(5707):238–240

    Article  Google Scholar 

  95. Morinaka Y, Tanabe F, Murata M et al (2010) Rational synthesis, enrichment, and 13C NMR spectra of endohedral C60 and C70 encapsulating a helium atom. Chem Commun 46(25):4532–4534

    Article  Google Scholar 

  96. Murata M, Maeda S, Morinaka Y et al (2008) Synthesis and reaction of fullerene C70 encapsulating two molecules of H2. J Am Chem Soc 130(47):15800–15801

    Article  Google Scholar 

  97. Kurotobi K, Murata Y (2011) A single molecule of water encapsulated in fullerene C60. Science 333(6042):613–616

    Article  Google Scholar 

  98. Zhang R, Murata M, Aharen T et al (2016) Synthesis of a distinct water dimer inside fullerene C70. Nat Chem 8(5):435–441

    Article  Google Scholar 

  99. Hashikawa Y, Murata M, Wakamiya A et al (2016) Synthesis and properties of endohedral Aza[60]fullerenes: H2O@C59N and H2@C59N as their dimers and monomers. J Am Chem Soc 138(12):4096–4104

    Article  Google Scholar 

  100. Vougioukalakis GC, Roubelakis MM, Orfanopoulos M (2010) Open-cage fullerenes: towards the construction of nanosized molecular containers. Chem Soc Rev 39(2):817–844

    Article  Google Scholar 

  101. Gan LB, Yang DZ, Zhang QY et al (2010) Preparation of open-cage fullerenes and incorporation of small molecules through their orifices. Adv Mater 22(13):1498–1507

    Article  Google Scholar 

  102. Murata M, Murata Y, Komatsu K (2008) Surgery of fullerenes. Chem Commun 46:6083–6094

    Article  Google Scholar 

  103. Rubin Y, Jarrosson T, Wang GW et al (2001) Insertion of helium and molecular hydrogen through the orifice of an open fullerene. Angew Chem-Int Edit 40(8):1543

    Google Scholar 

  104. Iwamatsu S, Uozaki T, Kobayashi K et al (2004) A bowl-shaped fullerene encapsulates a water into the cage. J Am Chem Soc 126(9):2668–2669

    Article  Google Scholar 

  105. Krachmalnicoff A, Bounds R, Mamone S et al (2015) Synthesis and characterisation of an open-cage fullerene encapsulating hydrogen fluoride. Chem Commun 51(24):4993–4996

    Article  Google Scholar 

  106. Chen C-S, Kuo T-S, Yeh W-Y (2016) Encapsulation of formaldehyde and hydrogen cyanide in an open-cage fullerene. Chem-Eur J 22(26):8773–8776

    Article  Google Scholar 

  107. Stanisky CM, Cross RJ, Saunders M (2009) Putting atoms and molecules into chemically opened fullerenes. J Am Chem Soc 131(9):3392–3395

    Article  Google Scholar 

  108. Iwamatsu S, Stanisky CM, Cross RJ et al (2006) Carbon monoxide inside an open-cage fullerene. Angew Chem-Int Edit 45(32):5337–5340

    Article  Google Scholar 

  109. Futagoishi T, Murata M, Wakamiya A et al (2015) Trapping N2 and CO2 on the sub-nano scale in the confined internal spaces of open-cage C60 derivatives: isolation and structural characterization of the host-guest complexes. Angew Chem-Int Edit Engl 54(49):14791–14794

    Article  Google Scholar 

  110. Whitener KE, Frunzi M, S-i Iwamatsu et al (2008) Putting ammonia into a chemically opened fullerene. J Am Chem Soc 130(42):13996–13999

    Article  Google Scholar 

  111. Whitener KE, Cross RJ, Saunders M et al (2009) Methane in an open-cage [60] fullerene. J Am Chem Soc 131(18):6338–6339

    Article  Google Scholar 

  112. Morinaka Y, Sato S, Wakamiya A et al (2013) X-ray observation of a helium atom and placing a nitrogen atom inside He@C60 and He@C70. Nat Commun 4:1554

    Article  Google Scholar 

  113. Olmstead MM, Costa DA, Maitra K et al (1999) Interaction of curved and flat molecular surfaces. The structures of crystalline compounds composed of fullerene (C60, C60O, C70, and C120O) and metal octaethylporphyrin units. J Am Chem Soc 121(30):7090–7097

    Article  Google Scholar 

  114. Rodriguez-Fortea A, Balch AL, Poblet JM (2011) Endohedral metallofullerenes: a unique host-guest association. Chem Soc Rev 40:3551–3563

    Article  Google Scholar 

  115. Yamada M, Akasaka T, Nagase S (2010) Endohedral metal atoms in pristine and functionalized fullerene cages. Acc Chem Res 43(1):92–102

    Article  Google Scholar 

  116. Lu X, Akasaka T, Nagase S (2011) Chemistry of endohedral metallofullerenes: the role of metals. Chem Commun 47(21):5942–5957

    Article  Google Scholar 

  117. Stevenson S, Thompson HR, Arvola KD et al (2015) Isolation of CeLu2N@I h -C80 through a non-chromatographic, two-step chemical process and crystallographic characterization of the pyramidalized CeLu2N within the icosahedral cage. Chem-Eur J 21(29):10362–10368

    Article  Google Scholar 

  118. Yang H, Jin H, Zhen H et al (2011) Isolation and crystallographic identification of four isomers of Sm@C90. J Am Chem Soc 133(16):6299–6306

    Article  Google Scholar 

  119. Iiduka Y, Wakahara T, Nakajima K et al (2006) 13C NMR spectroscopic study of scandium dimetallofullerene, Sc2@C84 vs. Sc2C2@C82. Chem Commun 19:2057–2059

    Article  Google Scholar 

  120. Yamazaki Y, Nakajima K, Wakahara T et al (2008) Observation of 13C NMR chemical shifts of metal carbides encapsulated in fullerenes: Sc2C2@C82, Sc2C2@C82, and Sc3C2@C80. Angew Chem-Int Edit Engl 47:7905–7908

    Article  Google Scholar 

  121. Akasaka T, Wakahara T, Nagase S et al (2001) Structural determination of the La@C82 isomer. J Phys Chem B 105(15):2971–2974

    Article  Google Scholar 

  122. Tsuchiya T, Wakahara T, Maeda Y et al (2005) 2D NMR characterization of the La@C82 anion. Angew Chem-Int Edit 44(21):3282–3285

    Article  Google Scholar 

  123. Yamada M, Wakahara T, Tsuchiya T et al (2008) Location of the metal atoms in Ce2@C78 and its bis-silylated derivative. Chem Commun 558–560

    Google Scholar 

  124. Yamada M, Wakahara T, Tsuchiya T et al (2008) Spectroscopic and theoretical study of endohedral dimetallofullerene having a non-IPR fullerene cage: Ce2@C72. J Phys Chem A 112:7627–7631

    Article  Google Scholar 

  125. Yamada M, Mizorogi N, Tsuchiya T et al (2009) Synthesis and characterization of the D 5h isomer of the endohedral dimetallofullerene Ce2@C80: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chem-Eur J 15:9486–9493

    Article  Google Scholar 

  126. Fu W, Xu L, Azurmendi H et al (2009) 89Y and 13C NMR cluster and carbon cage studies of an yttrium metallofullerene family, Y3N@C2n (n = 40-43). J Am Chem Soc 131(33):11762–11769

    Article  Google Scholar 

  127. Fu W, Wang X, Azuremendi H et al (2011) 14N and 45Sc NMR study of trimetallic nitride cluster (M3N)6+ dynamics inside a icosahedral C80 cage. Chem Commun 47(13):3858–3860

    Article  Google Scholar 

  128. Popov AA, Schiemenz S, Avdoshenko SM et al (2011) The state of asymmetric nitride clusters in endohedral fullerenes as studied by 14N NMR spectroscopy: experiment and theory. J Phys Chem C 115(31):15257–15265

    Article  Google Scholar 

  129. Akasaka T, Nagase S, Kobayashi K et al (1997) 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes. Angew Chem-Int Edit Engl 36(15):1643–1645

    Article  Google Scholar 

  130. Suzuki M, Mizorogi N, Yang T et al (2013) La2@C s (17 490)-C76: a new non-IPR dimetallic metallofullerene featuring unexpectedly weak metal-pentalene interactions. Chem-Eur J 19(50):17125–17130

    Article  Google Scholar 

  131. Kurihara H, Lu X, Iiduka Y et al (2011) Sc2C2@C80 rather than Sc2@C82: templated formation of unexpected C 2v (5)-C80 and temperature-dependent dynamic motion of internal Sc2C2 cluster. J Am Chem Soc 133(8):2382–2385

    Article  Google Scholar 

  132. Feng Y, Wang T, Xiang J et al (2015) Tuneable dynamics of a scandium nitride cluster inside an I h -C80 cage. Dalton Trans 44:2057–2061

    Article  Google Scholar 

  133. Popov AA, Chen N, Pinzón JR et al (2012) Redox-active scandium oxide cluster inside a fullerene cage: spectroscopic, voltammetric, electron spin resonance spectroelectrochemical, and extended density functional theory study of Sc4O2@C80 and its ion radicals. J Am Chem Soc 134(48):19607–19618

    Article  Google Scholar 

  134. Wang T-S, Feng L, Wu J-Y et al (2010) Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@C80-I h . J Am Chem Soc 132(46):16362–16364

    Article  Google Scholar 

  135. Wang GW, Saunders M, Khong A et al (2000) A new method for separating the isomeric C84 fullerenes. J Am Chem Soc 122(13):3216–3217

    Article  Google Scholar 

  136. Popov AA (2009) Metal-cage bonding, molecular structures and vibrational spectra of endohedral fullerenes: bridging experiment and theory. J Comput Theor Nanosci 6(2):292–317

    Article  Google Scholar 

  137. Popov AA, Krause M, Yang SF et al (2007) C78 cage isomerism defined by trimetallic nitride cluster size: a computational and vibrational spectroscopic study. J Phys Chem B 111(13):3363–3369

    Article  Google Scholar 

  138. Yang SF, Popov AA, Dunsch L (2007) Violating the isolated pentagon rule (IPR): the endohedral non-IPR cage of Sc3N@C70. Angew Chem-Int Edit 46(8):1256–1259

    Article  Google Scholar 

  139. Fowler P, Manolopoulos DE (1995) An atlas of fullerenes. Clarendon Press, Oxford

    Google Scholar 

  140. Takata M, Nishibori E, Sakata M et al (2003) Synchrotron radiation for structural chemistry—endohedral natures of metallofullerenes found by synchrotron radiation powder method. Struct Chem 14(1):23–38

    Article  Google Scholar 

  141. Akasaka T, Wakahara T, Nagase S et al (2000) La@C82 anion. An unusually stable metallofullerene. J Am Chem Soc 122(38):9316–9317

    Article  Google Scholar 

  142. Takata M, Umeda B, Nishibori E et al (1995) Confirmation by X-ray-diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 377(6544):46–49

    Article  Google Scholar 

  143. Sato S, Nikawa H, Seki S et al (2012) A co-crystal composed of the paramagnetic endohedral metallofullerene La@C82 and a nickel porphyrin with high electron mobility. Angew Chem-Int Edit Engl 51(7):1589–1591

    Article  Google Scholar 

  144. Suzuki M, Lu X, Sato S et al (2012) Where does the metal cation stay in Gd@C 2v (9)-C82? A single-crystal X-ray diffraction study. Inorg Chem 51(9):5270–5273

    Article  Google Scholar 

  145. Akasaka T, Lu X (2012) Structural and electronic properties of endohedral metallofullerenes. Chem Rec 12(2):256–269

    Article  Google Scholar 

  146. Kodama T, Ozawa N, Miyake Y et al (2002) Structural study of three isomers of Tm@C82 by 13C NMR spectroscopy. J Am Chem Soc 124(7):1452–1455

    Article  Google Scholar 

  147. Kodama T, Fujii R, Miyake Y et al (2003) Structural study of four Ca@C82 isomers by 13C NMR spectroscopy. Chem Phys Lett 377(1–2):197–200

    Article  Google Scholar 

  148. Reich A, Panthofer M, Modrow H et al (2004) The structure of Ba@C74. J Am Chem Soc 126(44):14428–14434

    Article  Google Scholar 

  149. Xu W, Hao Y, Uhlik F et al (2013) Structural and electrochemical studies of Sm@D 3h -C74 reveal a weak metal-cage interaction and a small band gap species. Nanoscale 5(21):10409–10413

    Article  Google Scholar 

  150. Kodama T, Fujii R, Miyake Y et al (2004) 13C NMR study of Ca@C74: the cage structure and the site-hopping motion of a Ca atom inside the cage. Chem Phys Lett 399(1–3):94–97

    Article  Google Scholar 

  151. Xu JX, Tsuchiya T, Hao C et al (2006) Structure determination of a missing-caged metallofullerene: Yb@C74 (II) and the dynamic motion of the encaged ytterbium ion. Chem Phys Lett 419(1–3):44–47

    Article  Google Scholar 

  152. Lu X, Slanina Z, Akasaka T et al (2010) Yb@C2n (n = 40, 41, 42): new fullerene allotropes with unexplored electrochemical properties. J Am Chem Soc 132(16):5896–5905

    Article  Google Scholar 

  153. Yang H, Wang Z, Jin H et al (2013) Isolation and crystallographic characterization of Sm@C 2v (3)-C80 through cocrystal formation with NiII(octaethylporphyrin) or bis(ethylenedithio)tetrathiafulvalene. Inorg Chem 52(3):1275–1284

    Article  Google Scholar 

  154. Yang H, Yu M, Jin H et al (2012) The isolation of three isomers of Sm@C84 and the X-ray crystallographic characterization of Sm@D 3d (19)-C84 and Sm@C 2(13)-C84. J Am Chem Soc 134(11):5331–5338

    Article  Google Scholar 

  155. Jin H, Yang H, Yu M et al (2012) Single samarium atoms in large fullerene cages. characterization of two isomers of Sm@C92 and four isomers of Sm@C94 with the X-ray crystallographic identification of Sm@C 1(42)-C92, Sm@C s(24)-C92, and Sm@C3v(134)-C94. J Am Chem Soc 134(26):10933–10941

    Article  Google Scholar 

  156. Xu W, Niu B, Feng L et al (2012) Access to an unexplored chiral C82 Cage by encaging a divalent metal: structural elucidation and electrochemical studies of Sm@C 2(5)-C82. Chem-Eur J 18(45):14246–14249

    Article  Google Scholar 

  157. Yang H, Jin H, Wang X et al (2012) X-ray crystallographic characterization of new soluble endohedral fullerenes utilizing the popular C82 bucky cage. isolation and structural characterization of Sm@C 3v (7)-C82, Sm@C s (6)-C82, and Sm@C 2(5)-C82. J Am Chem Soc 134(34):14127–14136

    Article  Google Scholar 

  158. Xu W, Niu B, Shi Z et al (2012) Sm@C 2v (3)-C80: site-hopping motion of endohedral Sm atom and metal-induced effect on redox profile. Nanoscale 4:6876–6879

    Article  Google Scholar 

  159. Che Y, Yang H, Wang Z et al (2009) Isolation and structural characterization of two very large, and largely empty, endohedral fullerenes: Tm@C 3v -C94 and Ca@C 3v -C94. Inorg Chem 48(13):6004–6010

    Article  Google Scholar 

  160. Shinohara H, Sato H, Saito Y et al (1992) Mass spectroscopic and ESR characterization of soluble yttrium-containing metallofullerenes YC82 and Y2C82. J Phys Chem 96(9):3571–3573

    Article  Google Scholar 

  161. Nishibori E, Takata M, Sakata M et al (2001) Pentagonal-dodecahedral La2 charge density in [80-I h ]fullerene: La2@C80. Angew Chem-Int Edit 40(16):2998–2999

    Article  Google Scholar 

  162. Kato H, Taninaka A, Sugai T et al (2003) Structure of a missing-caged metallofullerene: La2@C72. J Am Chem Soc 125(26):7782–7783

    Article  Google Scholar 

  163. Cao BP, Wakahara T, Tsuchiya T et al (2004) Isolation, characterization, and theoretical study of La2@C78. J Am Chem Soc 126(30):9164–9165

    Article  Google Scholar 

  164. Yamada M, Nakahodo T, Wakahara T et al (2005) Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J Am Chem Soc 127(42):14570–14571

    Article  Google Scholar 

  165. Beavers CM, Jin H, Yang H et al (2011) very large, soluble endohedral fullerenes in the series La2C90 to La2C138: isolation and crystallographic characterization of La2@D 5(450)-C100. J Am Chem Soc 133(39):15338–15341

    Article  Google Scholar 

  166. Popov AA, Avdoshenko SM, Pendás AM et al (2012) Bonding between strongly repulsive metal atoms: an oxymoron made real in a confined space of endohedral metallofullerenes. Chem Commun 48:8031–8050

    Article  Google Scholar 

  167. Kurihara H, Lu X, Iiduka Y et al (2012) Sc2@C 3v (8)-C82 vs. Sc2C2@C 3v (8)-C82: drastic effect of C2 capture on the redox properties of scandium metallofullerenes. Chem Commun 48:1290–1292

    Article  Google Scholar 

  168. Inoue T, Tomiyama T, Sugai T et al (2004) Trapping a C2 radical in endohedral metallofullerenes: synthesis and structures of (Y2C2)@C82 (isomers I, II, and III). J Phys Chem B 108(23):7573–7579

    Article  Google Scholar 

  169. Olmstead MM, de Bettencourt-Dias A, Stevenson S et al (2002) Crystallographic characterization of the structure of the endohedral fullerene Er2@C82 Isomer I with C s cage symmetry and multiple sites for erbium along a band of ten contiguous hexagons. J Am Chem Soc 124(16):4172–4173

    Google Scholar 

  170. Olmstead MM, Lee HM, Stevenson S et al (2002) Crystallographic characterization of Isomer 2 of Er2@C82 and comparison with Isomer 1 of Er2@C82. Chem Commun 22:2688–2689

    Article  Google Scholar 

  171. Ito Y, Okazaki T, Okubo S et al (2007) Enhanced 1520 nm photoluminescence from Er3+ ions in di-erbium-carbide metallofullerenes (Er2C2)@C82 (isomers I, II, and III). ACS Nano 1(5):456–462

    Article  Google Scholar 

  172. Plant SR, Dantelle G, Ito Y et al (2009) Acuminated fluorescence of Er3+ centres in endohedral fullerenes through the incarceration of a carbide cluster. Chem Phys Lett 476:41–45

    Article  Google Scholar 

  173. Umemoto H, Ohashi K, Inoue T et al (2010) Synthesis and UHV-STM observation of the Td-symmetric Lu metallofullerene: Lu2@C76(T d ). Chem Commun 46(31):5653–5655

    Article  Google Scholar 

  174. Yamada M, Kurihara H, Suzuki M et al (2014) Sc2@C66 Revisited: an endohedral fullerene with scandium ions nestled within two unsaturated linear triquinanes. J Am Chem Soc 136(21):7611–7614

    Article  Google Scholar 

  175. Kikuchi K, Akiyama K, Sakaguchi K et al (2000) Production and isolation of the isomers of dimetallofulerenes, HoTm@C82 and Tm2@C82. Chem Phys Lett 319(5–6):472–476

    Article  Google Scholar 

  176. Zuo T, Xu L, Beavers CM et al (2008) M2@C79N (M = Y, Tb): isolation and characterization of stable endohedral metallofullerenes exhibiting M…M bonding interactions inside Aza [80] fullerene cages. J Am Chem Soc 130(39):12992–12997

    Article  Google Scholar 

  177. Fu W, Zhang J, Fuhrer T et al (2011) Gd2@C79N: isolation, characterization, and monoadduct formation of a very stable heterofullerene with a magnetic spin state of S = 15/2. J Am Chem Soc 133:9741–9750

    Article  Google Scholar 

  178. Lu X, Akasaka T, Nagase S (2013) Carbide cluster metallofullerenes: structure, properties, and possible origin. Acc Chem Res 46(7):1627–1635

    Article  Google Scholar 

  179. Jin P, Tang C, Chen Z (2014) Carbon atoms trapped in cages: metal carbide clusterfullerenes. Coord Chem Rev 270–271:89–111

    Article  Google Scholar 

  180. Kurihara H, Lu X, Iiduka Y et al (2012) X-ray structures of Sc2C2@C2n (n = 40-42): in-depth understanding of the core-shell interplay in carbide cluster metallofullerenes. Inorg Chem 51(1):746–750

    Article  Google Scholar 

  181. Zhang J, Fuhrer T, Fu W et al (2012) Nanoscale fullerene compression of a yttrium carbide cluster. J Am Chem Soc 134(20):8487–8493

    Article  Google Scholar 

  182. Deng Q, Popov AA (2014) Clusters encapsulated in endohedral metallofullerenes: how strained are they? J Am Chem Soc 136(11):4257–4264

    Article  Google Scholar 

  183. Feng Y, Wang T, Wu J et al (2013) Structural and electronic studies of metal carbide clusterfullerene Sc2C2@C s -C72. Nanoscale 5(15):6704–6707

    Article  Google Scholar 

  184. Yang H, Lu C, Liu Z et al (2008) Detection of a family of gadolinium-containing endohedral fullerenes and the isolation and crystallographic characterization of one member as a metal-carbide encapsulated inside a large fullerene cage. J Am Chem Soc 130(51):17296–17300

    Article  Google Scholar 

  185. Cai W, Li F-F, Bao L et al (2016) Isolation and crystallographic characterization of La2C2@C s (574)-C102 and La2C2@C 2(816)-C104: evidences for the top-down formation mechanism of fullerenes. J Am Chem Soc 138(20):6670–6675

    Article  Google Scholar 

  186. Iiduka Y, Wakahara T, Nakahodo T et al (2005) Structural determination of metallofuIlerene Sc3C82 revisited: a surprising finding. J Am Chem Soc 127(36):12500–12501

    Article  Google Scholar 

  187. Xu W, Wang T-S, Wu J-Y et al (2011) Entrapped planar trimetallic carbide in a fullerene cage: synthesis, isolation, and spectroscopic studies of Lu3C2@C88. J Phys Chem C 115(2):402–405

    Article  Google Scholar 

  188. Wang T-S, Chen N, Xiang J-F et al (2009) Russian-doll-type metal carbide endofullerene: synthesis, isolation, and characterization of Sc4C2@C80. J Am Chem Soc 131(46):16646–16647

    Article  Google Scholar 

  189. Tan K, Lu X, Wang CR (2006) Unprecedented μ4-C2 6− anion in Sc4C2@C80. J Phys Chem B 110(23):11098–11102

    Article  Google Scholar 

  190. Krause M, Ziegs F, Popov AA et al (2007) Entrapped bonded hydrogen in a fullerene: the five-atom cluster Sc3CH in C80. ChemPhysChem 8(4):537–540

    Article  Google Scholar 

  191. Deng Q, Junghans K, Popov AA (2015) Carbide clusterfullerenes with odd number of carbon atoms: molecular and electronic structures of Sc4C@C80, Sc4C@C82, and Sc4C3@C80. Theor Chem Acc 134(2):10

    Article  Google Scholar 

  192. Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3(8):1298–1320

    Article  Google Scholar 

  193. Zhang J, Stevenson S, Dorn HC (2013) Trimetallic nitride template endohedral metallofullerenes: discovery, structural characterization, reactivity, and applications. Acc Chem Res 46(7):1548–1557

    Article  Google Scholar 

  194. Duchamp JC, Demortier A, Fletcher KR et al (2003) An isomer of the endohedral metallofullerene Sc3N@C80 with D 5h symmetry. Chem Phys Lett 375(5–6):655–659

    Article  Google Scholar 

  195. Cai T, Xu LS, Anderson MR et al (2006) Structure and enhanced reactivity rates of the D 5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif. J Am Chem Soc 128(26):8581–8589

    Article  Google Scholar 

  196. Stevenson S, Fowler PW, Heine T et al (2000) Materials science—a stable non-classical metallofullerene family. Nature 408(6811):427–428

    Article  Google Scholar 

  197. Olmstead MM, Lee HM, Duchamp JC et al (2003) Sc3N@C68: folded pentalene coordination in an endohedral fullerene that does not obey the isolated pentagon rule. Angew Chem-Int Edit 42(8):900–903

    Article  Google Scholar 

  198. Olmstead MM, de Bettencourt-Dias A, Duchamp JC et al (2001) Isolation and structural characterization of the endohedral fullerene Sc3N@C78. Angew Chem-Int Edit 40(7):1223–1225

    Article  Google Scholar 

  199. Wei T, Wang S, Liu F et al (2015) Capturing the long-sought small-bandgap endohedral fullerene Sc3N@C82 with low kinetic stability. J Am Chem Soc 137(8):3119–3123

    Article  Google Scholar 

  200. Krause M, Dunsch L (2005) Gadolinium nitride Gd3N in carbon cages: the influence of cluster size and bond strength. Angew Chem-Int Edit 44(10):1557–1560

    Article  Google Scholar 

  201. Yang SF, Dunsch L (2005) A large family of dysprosium-based trimetallic nitride endohedral fullerenes: Dy3N@C2n (39 ≤ n ≤ 44). J Phys Chem B 109(25):12320–12328

    Article  Google Scholar 

  202. Krause M, Wong J, Dunsch L (2005) Expanding the world of endohedral fullerenes—the Tm3N@C2n (39 ≤ n ≤ 43) clusterfullerene family. Chem-Eur J 11(2):706–711

    Article  Google Scholar 

  203. Beavers CM, Zuo TM, Duchamp JC et al (2006) Tb3N@C84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. J Am Chem Soc 128(35):11352–11353

    Article  Google Scholar 

  204. Chaur MN, Melin F, Elliott B et al (2007) Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88. J Am Chem Soc 129(47):14826–14829

    Article  Google Scholar 

  205. Zuo TM, Beavers CM, Duchamp JC et al (2007) Isolation and structural characterization of a family of endohedral fullerenes including the large, chiral cage fullerenes Tb3N@C88 and Tb3N@C86 as well as the I h and D 5h isomers of Tb3N@C80. J Am Chem Soc 129(7):2035–2043

    Article  Google Scholar 

  206. Fu W, Zhang J, Champion H et al (2011) Electronic properties and 13C NMR structural study of Y3N@C88. Inorg Chem 50(10):4256–4259

    Article  Google Scholar 

  207. Beavers CM, Chaur MN, Olmstead MM et al (2009) Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C 2(22010)-C78 departs from the isolated pentagon rule. J Am Chem Soc 131(32):11519–11524

    Article  Google Scholar 

  208. Mercado BQ, Beavers CM, Olmstead MM et al (2008) Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene—Gd3N@C s (39663)-C82. J Am Chem Soc 130(25):7854–7855

    Article  Google Scholar 

  209. Melin F, Chaur MN, Engmann S et al (2007) The large Nd3N@C2n (40 ≤2n ≤49) cluster fullerene family: preferential templating of a C88 Cage by a trimetallic nitride cluster. Angew Chem-Int Edit 46(47):9032–9035

    Article  Google Scholar 

  210. Chaur MN, Melin F, Elliott B et al (2008) New M3N@C2n endohedral metallofullerene families (M = Nd, Pr, Ce; n = 40-53): expanding the preferential templating of the C88 cage and approaching the C96 cage. Chem-Eur J 14(15):4594–4599

    Article  Google Scholar 

  211. Chaur MN, Melin F, Ashby J et al (2008) Lanthanum nitride endohedral fullerenes La3N@C2n (43 < n<55): preferential formation of La3N@C96. Chem-Eur J 14(27):8213–8219

    Article  Google Scholar 

  212. Popov AA, Dunsch L (2007) Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): a density functional theory study. J Am Chem Soc 129(38):11835–11849

    Article  Google Scholar 

  213. Valencia R, Rodriguez-Fortea A, Clotet A et al (2009) Electronic structure and redox properties of metal nitride endohedral fullerenes M3N@C2n (M = Sc, Y, La, and Gd; 2n = 80, 84, 88, 92, 96). Chem-Eur J 15(41):10997–11009

    Article  Google Scholar 

  214. Chaur MN, Valencia R, Rodriguez-Fortea A et al (2009) Trimetallic nitride endohedral fullerenes: experimental and theoretical evidence for the M3N6+@C 6−2n model. Angew Chem-Int Edit 48(8):1425–1428

    Article  Google Scholar 

  215. Svitova AL, Popov AA, Dunsch L (2013) Gd/Sc-based mixed metal nitride cluster fullerenes: the mutual influence of the cage and cluster size and the role of Sc in the electronic structure. Inorg Chem 52(6):3368–3380

    Article  Google Scholar 

  216. Wu J, Wang T, Ma Y et al (2011) Synthesis, isolation, characterization, and theoretical studies of Sc3NC@C78-C 2. J Phys Chem C 115(48):23755–23759

    Article  Google Scholar 

  217. Yang S, Chen C, Liu F et al (2013) An improbable monometallic cluster entrapped in a popular fullerene cage: YCN@C s (6)-C82. Sci Rep 3:1487

    Article  Google Scholar 

  218. Liu F, Wang S, Guan J et al (2014) Putting a terbium-monometallic cyanide cluster into the C82 fullerene cage: TbCN@C 2(5)-C82. Inorg Chem 53(10):5201–5205

    Article  Google Scholar 

  219. Liu F, Gao C-L, Deng Q et al (2016) Triangular monometallic cyanide cluster entrapped in carbon cage with geometry-dependent molecular magnetism. J Am Chem Soc 138(44):14764–14771

    Article  Google Scholar 

  220. Wang T, Wu J, Feng Y (2014) Scandium carbide/cyanide alloyed cluster inside fullerene cage: synthesis and structural studies of Sc33-C2)(μ3-CN)@I h -C80. Dalton Trans 43:16270–16274

    Article  Google Scholar 

  221. Stevenson S, Mackey MA, Stuart MA et al (2008) A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. synthesis, isolation, and structural characterization of Sc43-O)2@I h -C80. J Am Chem Soc 130(36):11844–11845

    Article  Google Scholar 

  222. Mercado BQ, Olmstead MM, Beavers CM et al (2010) A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc43-O)3@I h -C80. Chem Commun 46:279–281

    Article  Google Scholar 

  223. Valencia R, Rodriguez-Fortea A, Stevenson S et al (2009) Electronic structures of scandium oxide endohedral metallofullerenes, Sc43-O)n@I h -C80 (n = 2, 3). Inorg Chem 48:5957–5961

    Article  Google Scholar 

  224. Mercado BQ, Stuart MA, Mackey MA et al (2010) Sc2(μ 2-O) trapped in a fullerene cage: the isolation and structural characterization of Sc2(μ 2-O)@C s (6)-C82 and the relevance of the thermal and entropic effects in fullerene isomer selection. J Am Chem Soc 132:12098–12105

    Article  Google Scholar 

  225. Tang Q, Abella L, Hao Y et al (2016) Sc2O@C 3v (8)-C82: a missing isomer of Sc2O@C82. Inorg Chem 55(4):1926–1933

    Article  Google Scholar 

  226. Feng L, Zhang M, Hao Y et al (2016) Endohedrally stabilized C70 isomer with fused pentagons characterized by crystallography. Dalton Trans 45:8142–8148

    Article  Google Scholar 

  227. Yang T, Hao Y, Abella L et al (2015) Sc2O@T d (19151)-C76: hindered cluster motion inside a tetrahedral carbon cage probed by crystallographic and computational studies. Chem-Eur J 21(31):11110–11117

    Article  Google Scholar 

  228. Tang Q, Abella L, Hao Y et al (2015) Sc2O@C 2v (5)-C80: dimetallic oxide cluster inside a C80 fullerene cage. Inorg Chem 54(20):9845–9852

    Article  Google Scholar 

  229. Stevenson S (2014) Metal Oxide Clusterfullerenes. In: Yang S, Wang C-R (eds) Endohedral fullerenes. From fundamentals to applications. World Scientific, Singapore, pp 179–210

    Chapter  Google Scholar 

  230. Mercado BQ, Chen N, Rodriguez-Fortea A et al (2011) The shape of the Sc22-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc22-S)@C s (6)-C82 and Sc22-S)@C 3v (8)-C82. J Am Chem Soc 133(17):6752–6760

    Article  Google Scholar 

  231. Chen N, Mulet-Gas M, Li Y-Y et al (2013) Sc2S@C 2(7892)-C70: a metallic sulfide cluster inside a non-IPR C70 cage. Chem Sci 4(1):180–186

    Article  Google Scholar 

  232. Nakao K, Kurita N, Fujita M (1994) Ab-initio molecular-orbital calculation for C70 and seven isomers of C80. Phys Rev B 49(16):11415–11420

    Article  Google Scholar 

  233. Rodriguez-Fortea A, Alegret N, Balch AL et al (2010) The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. Nat Chem 2(11):955–961

    Article  Google Scholar 

  234. Valencia R, Rodríguez-Fortea A, Poblet JM (2008) Understanding the stabilization of metal carbide endohedral fullerenes M2C2@C82 and related systems. J Phys ChemA 112(20):4550–4555

    Article  Google Scholar 

  235. Stevenson S, Phillips JP, Reid JE et al (2004) Pyramidalization of Gd3N inside a C80 cage. the synthesis and structure of Gd3N@C80. Chem Commun 24:2814–2815

    Article  Google Scholar 

  236. Chaur MN, Aparicio-Angles X, Mercado BQ et al (2010) Structural and electrochemical property correlations of metallic nitride endohedral metallofullerenes. J Phys Chem C 114(30):13003–13009

    Article  Google Scholar 

  237. Kobayashi K, Nagase S, Yoshida M et al (1997) Endohedral metallofullerenes. Are the isolated pentagon rule and fullerene structures always satisfied? J Am Chem Soc 119(51):12693–12694

    Article  Google Scholar 

  238. Wang CR, Kai T, Tomiyama T et al (2000) C66 fullerene encaging a scandium dimer. Nature 408:426–427

    Article  Google Scholar 

  239. Zhang Y, Ghiassi KB, Deng Q et al (2015) Synthesis and structure of LaSc2N@C s (hept)-C80 with one heptagon and thirteen pentagons. Angew Chem-Int Edit Engl 52(2):495–499

    Google Scholar 

  240. Gan L-H, Lei D, Fowler PW (2016) Structural interconnections and the role of heptagonal rings in endohedral trimetallic nitride template fullerenes. J Comput Chem 37(20):1907–1913

    Article  Google Scholar 

  241. Chen C-H, Abella L, Cerón MR et al (2016) Zigzag Sc2C2 carbide cluster inside a [88] fullerene cage with one heptagon, Sc2C2@C s (hept)-C88: a kinetically trapped fullerene formed by C2 insertion? J Am Chem Soc 138(39):13030–13037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Popov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Popov, A.A. (2017). Synthesis and Molecular Structures of Endohedral Fullerenes. In: Popov, A. (eds) Endohedral Fullerenes: Electron Transfer and Spin. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47049-8_1

Download citation

Publish with us

Policies and ethics