Skip to main content

Fusion of Multitemporal Spaceborne SAR and Optical Data for Urban Mapping and Urbanization Monitoring

  • Chapter
  • First Online:
Multitemporal Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 20))

Abstract

The overall objective of this research is to evaluate multitemporal spaceborne SAR and optical data for urban land cover mapping and urbanization monitoring. Multitemporal Sentinel-1A SAR and historical ERS SAR and ENVISAT ASAR data as well as HJ-1B multispectral data were acquired in Beijing, Chendgdu and Nanchang, China where rapid urbanization has taken place. KTH-SEG, a novel object-based classification method is adopted for urban land cover mapping while KTH-Pavia Urban Extractor, a robust algorithm is improved for urban extent extraction and urbanization monitoring. The research demonstrates that, for urban land cover classification, the fusion of multitemporal SAR and optical data is superior to SAR or optical data alone. The second best classification result is achieved using fusion of 4-date SAR and one HJ-1B image. The results indicate that carefully selected multitemporal SAR dataset and its fusion with optical data could produce nearly as good classification accuracy as the whole multitemporal dataset. The results also show that KTH-SEG, the edge-aware region growing and merging segmentation algorithm, is effective for classification of SAR, optical and their fusion. KTH-SEG outperforms eCognition, the commonly used commercial software, for image segmentation and classification of linear features. For Urban extent extraction, single-date and multitemporal SAR data including ERS SAR, ENVISAT ASAR and Sentinel-1A SAR achieved very promising results in all study areas using the improved KTH-Pavia Urban Extractor. The results showed that urban areas as well as small towns and villages could be well extracted using multitemporal Sentinel-1A SAR data while major urban areas could be well extracted using a single-date single-polarization SAR image. The results clearly demonstrate that multitemporal SAR data are cost- and time-effective way for monitoring spatiotemporal patterns of urbanization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amarsaikhan D, Douglas T (2004) Data fusion and multisource image classification. Int J Remote Sens 25(17):3529–3539

    Article  Google Scholar 

  • Ash C, Jasny BR, Roberts L, Stone R, Sugden AM (2008) Reimagining cities. Science 319:739

    Google Scholar 

  • Ban Y, Yousif O, Hu H (2014) Fusion of SAR and optical data for urban land cover mapping and change detection. In: Weng Q (ed) Global urban monitoring and assessment through earth observation. Taylor & Francis Group, LLC

    Google Scholar 

  • Ban Y, Jacob A (2013) Object-based fusion of multitemporal multiangle ENVISAT ASAR and HJ-1B multispectral data for urban land-cover mapping. IEEE Trans Geosci Remote Sens 51(4):1998–2006

    Article  Google Scholar 

  • Ban Y, Yousif OA (2012) Multitemporal spaceborne SAR data for urban change detection in China. IEEE J Select Topics Appl Earth Observ Remote Sens (JSARS) 5(4):1087–1094

    Article  Google Scholar 

  • Ban Y, Hu H, Rangel I (2010) Fusion of QuickBird MS and RADARSAT-1 SAR data for land-cover mapping: object-based and knowledge-based approach. Int J Remote Sens 31(6):1391–1410

    Article  Google Scholar 

  • Ban Y, Jacob A, Gamba P (2015) Spaceborne SAR data for global urban mapping at 30 m resolution using a robust urban extractor. ISPRS J Photogramm Remote Sens Spec Issue Glob Land Cov Map 103:28–37

    Article  Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65(1):2–16

    Article  Google Scholar 

  • Bruzzone L, Marconcini M, Wegmuller U, Wiesmann A (2004) An advanced system for the automatic classification of multitemporal SAR images. IEEE Trans Geosci Remote Sens 42(6):1321–1334

    Article  Google Scholar 

  • CEOS (2011) CEOS EO handbook—mission summary—HJ-1B. CEOS, Washington, DC. [Online]. Available: http://database.eohandbook.com/database/missionsummary.aspx?missionID=464

  • Chen J, Ban Y, Li S (2014) China: open access to earth land-cover map. Nature 514(7523):434–434

    Article  Google Scholar 

  • Chen J, Jin Chen, Liao A, Xin Cao, Lijun Chen, Xuehong Chen, Chaoying He, Gang Han, Shu Peng, Miao Lu, Weiwei Zhang, Xiaohua Tong, Jon Mills (2015) Global land cover mapping at 30 m resolution: a POK-based operational approach. ISPRS J Photogramm Remote Sens 103:7–27, ISSN 0924–2716

    Google Scholar 

  • Dekker RJ (2003) Texture analysis and classification of ERS SAR images for map updating of urban areas in The Netherlands. IEEE Trans Geosci Remote Sens 41(9):1950–1958

    Article  Google Scholar 

  • Elvidge CD, Sutton PC, Tuttle BT, Ghosh T, Baugh KE (2010) Global urban mapping based on nighttime lights. In: Global mapping of human settlements. Taylor and Francis, London, pp 129–144

    Google Scholar 

  • Esch T, Thiel M, Schenk A, Roth A, Muller A, Dech S (2010) Delineation of urban footprints from TerraSAR-X data by analyzing speckle characteristics and intensity information. IEEE Trans Geosci Remote Sens 48(2):905–916

    Article  Google Scholar 

  • Esch T, Schenk A, Ullmann T, Thiel M, Roth A, Dech S (2011) Characterization of land cover types in TerraSAR-X images by combined analysis of speckle statistics and intensity information. IEEE Trans Geosci Remote Sens 49(6):1911–1925

    Article  Google Scholar 

  • Esch T, Taubenböck H, Roth A, Heldens W, Felbier A, Thiel M, Schmidt M, Müller A, Dech S (2012) TanDEM-X mission—new perspectives for the inventory and monitoring of global settlement patterns. J Appl Remote Sens 6(1):061702–1–061702–21

    Article  Google Scholar 

  • Esch T, Marconcini M, Felbier A, Roth A, Heldens W, Huber M, Dech S (2013) Urban footprint processor—fully automated processing chain generating settlement masks from global data of the TanDEM-X mission. IEEE Geosci Remote Sens Lett 10(6):1617–1621

    Article  Google Scholar 

  • Fan J, Yau DY, Elmagarmid AK, Aref WG (2001) Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans Image Process 10(10):1454–66. doi:10.1109/83.951532

    Article  Google Scholar 

  • Gamba P, Aldrighi M (2012) SAR data classification of urban areas by means of segmentation techniques and ancillary optical data. IEEE J SelectTopics Appl Earth Observ Remote Sens 5(4):1140–1148

    Article  Google Scholar 

  • Gamba P, Houshmand B (2001) An efficient neural classification chain of SAR and optical urban images. Int J Remote Sens 22(8):1535–1553

    Article  Google Scholar 

  • Gamba P, Lisini G (2013) Fast and efficient urban extent extraction using ASAR wide swath mode data. IEEE J SelectTopics Appl Earth Observ Remote Sens 6(5):2184–2195

    Article  Google Scholar 

  • Gamba P, Aldrighi M, Stasolla M (2011) Robust extraction of urban area extents in HR and VHR SAR images. IEEE JSTARSf 4(1):27–34

    Google Scholar 

  • Gong P, Marceau DJ, Howarth PJ (1992) A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sens Environ 40(2):137–151

    Article  Google Scholar 

  • Gong P, Wang J, Yu L, Zhao Y, Zhao Y, Liang L, Chen J (2013) Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int J Remote Sens 34(7):2607–2654

    Article  Google Scholar 

  • Griffiths P, Hostert P, Gruebner O, van der Linden S (2010) Mapping megacity growth with multi-sensor data. Remote Sens Environ 114(2):426–439

    Article  Google Scholar 

  • Haas J, Ban Y (2014) Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze River Delta and the Pearl River Delta. Int J Appl Earth Obs Geoinf 30:42–55

    Article  Google Scholar 

  • Haas J, Ban Y (2016) Mapping and monitoring urban ecosystem services using multitemporal high-resolution satellite data. IEEE J Select Topics Appl Earth Observ Remote Sens PP(99):1–13. doi:10.1109/JSTARS.2016.2586582. http://ieeexplore.ieee.org/document/7536135/

    Google Scholar 

  • Hu H, Ban Y (2012) Multitemporal RADARSAT-2 Ultra-Fine-Beam SAR data for urban land cover classification. Can J Remote Sens 38(01):1–11

    Article  Google Scholar 

  • Jacquin A, Misakova L, Gay M (2008) A hybrid object based classification approach for mapping urban sprawl in periurban environment. Landsc Urban Plan 84:152–165

    Article  Google Scholar 

  • Lombardo P, Sciotti M, Pellizzeri TM, Meloni M (2003) Optimum model-based segmentation techniques for multifrequency polarimetric SAR images of urban areas. IEEE Trans Geosci Remote Sens 41(9):1959–1975

    Article  Google Scholar 

  • Moran EF (2010) Land cover classification in a complex urban-rural landscape with Quickbird imagery. Photogramm Eng Remote Sens 76(10):1159–1168

    Article  Google Scholar 

  • Niu X, Ban Y (2012) An adaptive contextual SEM algorithm for urban land cover mapping using multitemporal high-resolution polarimetric SAR data. IEEE J Sel Topics Appl Earth Observ Remote Sens 5(4):1129–1139

    Article  Google Scholar 

  • Niu X, Ban Y (2013a) Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. Int J Remote Sens 34(1):1–26

    Article  Google Scholar 

  • Niu X, Ban Y (2013b) Multitemporal polarimetric RADARSAT-2 SAR data for urban land cover mapping through a dictionary-based and a rule-based model selection in a contextual SEM algorithm. Can J Remote Sens 39(02):138–151

    Article  Google Scholar 

  • Niu X, Ban Y (2014) A novel contextual classification algorithm for multitemporal polarimetric SAR data. IEEE Transac GeoSci Remote Sens Lett 11(3):681–685

    Article  Google Scholar 

  • Niu X, Ban Y, Dou Y (2015) RADARSAT-2 fine-beam polarimetric and ultra-fine-beam SAR data for urban mapping: comparison and synergy. Int J Remote Sens 37(12):2810–2830. doi:10.1080/01431161.2015.1054050

    Google Scholar 

  • Pellizzeri TM, Gamba P, Lombardo P, Dell’Acqua F (2003) Multitemporal/multiband SAR classification of urban areas using spatial analysis: statistical versus neural kernel-based approach. IEEE Trans Geosci Remote Sens 41(10):2338–2353

    Article  Google Scholar 

  • Pesaresi M, Ehrlich D, Caravaggi I, Kauffmann M, Louvrier C (2011) Toward global automatic built-up area recognition using optical VHR imagery. IEEE JSTARS 4(4):923–934

    Google Scholar 

  • Schneider A, Fried MA, Potere D (2009) A new map of global urban extent from MODIS satellite data. Environ Res Lett 4(4):044003-1–044003-11

    Google Scholar 

  • Schneider A, Friedl MA, Potere D (2010) Mapping global urban areas using MODIS 500-m data: new methods and datasets based on ‘urban ecoregions’. Remote Sens Environ 114(8): 1733–1746

    Article  Google Scholar 

  • Senthilkumaran N, Rajesh R (2009) Edge detection techniques for image segmentation—a survey of soft computing approaches. Int J Recent Trends Eng 1(2):250–254

    Google Scholar 

  • Seto KC, Fragkias M, Güneralp B, Reilly MK (2011) A meta-analysis of global urban land expansion. PLoS One 6(8), e23777

    Article  Google Scholar 

  • Taubenböck H, Esch T, Felbier A, Wiesner M, Roth A, Dech S (2012) Monitoring urbanization in mega cities from space. Remote Sens Environ 117:162–176

    Article  Google Scholar 

  • United Nations (2014) World urbanization prospects the 2014 revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section, New York

    Google Scholar 

  • Wang L, Gong P, Ying Q, Yang Z, Cheng X, Ran Q (2010) Settlement extraction over north china plain with landsat and Beijing-1 data using an improved watershed segmentation algorithm. Int J Remote Sens 31(6):1411–1426

    Article  Google Scholar 

  • Waske B, Benediktsson JA (2008) Fusion of support vector machines for classification of multisensor data. IEEE Trans Geosci Remote Sens 45(12):3858–3866

    Article  Google Scholar 

  • Waske B, Linden VDS (2008) Classifying multilevel imagery from SAR and optical sensors by decision fusion. IEEE Trans Geosci Remote Sens 46(5):1457–1466

    Article  Google Scholar 

  • Yousif OA, Ban Y (2013) Improving urban change detection from multitemporal SAR images using PCA-NLM. IEEE Transac Geosci Remote Sens 51(4):2032–2041

    Article  Google Scholar 

  • Yu Q, Clausi DA (2008) IRGS: image segmentation using edge penalties and region growing. IEEE Trans Pattern Anal Mach Intell 30(12):2126–2139

    Article  Google Scholar 

  • Yu P, Qin AK, Clausi DA (2012) Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty. IEEE Trans Geosci Remote Sens 50(4):1302–1317

    Article  Google Scholar 

  • Zhang Q, Seto KC (2011) Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens Environ 115(9):2320–2329

    Article  Google Scholar 

  • Zhu CE, Woodcock JR, Kellndorfer J (2012) Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using landsat and SAR data. Remote Sens Urban Environ 117:72–82

    Google Scholar 

Download references

Acknowledgement

This research is part of the EO4Urban project funded by the ESA DUE INNOVATOR III program. It is also part of the ‘Urbanization and Environment/Climate’ project within the ESA/MOST, China’s joint Dragon III program. The authors thank Osama Yousif and Marvin Mc Cutchan for their assistance in this research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifang Ban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Ban, Y., Jacob, A. (2016). Fusion of Multitemporal Spaceborne SAR and Optical Data for Urban Mapping and Urbanization Monitoring. In: Ban, Y. (eds) Multitemporal Remote Sensing. Remote Sensing and Digital Image Processing, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-47037-5_6

Download citation

Publish with us

Policies and ethics