Skip to main content

An Approach for Determining Relationships Between Disturbance and Habitat Selection Using Bi-weekly Synthetic Images and Telemetry Data

  • Chapter
  • First Online:
Multitemporal Remote Sensing

Abstract

Ecological studies can be limited by the mismatch in spatial-temporal scales between wildlife GPS telemetry data, collected sub-hourly, and the large-area maps used to identify disturbances, generally updated annually. Recent advancements in remote sensing, data fusion modeling, mapping, and change detection approaches offer environmental data products representing every 16-day period through the growing season. Here we highlight opportunities and challenges for integrating wildlife location data with high spatial and temporal resolution landscape disturbance data sets, available from remotely sensed imagery. We integrated 16-day outputs from the Spatial Temporal Adaptive Algorithm for mapping Reflectance Change (STAARCH) disturbance maps with grizzly bear (Ursus arctos) telemetry data. Our results indicate that males and females avoided same-year disturbances, while male bears were most likely to avoid recently disturbed areas in summer. When intra-year (disturbances mapped at a 16-day time-step) analysis of disturbance was compared to traditional annual time-step analysis, annual aggregation of disturbance data resulted in an increase in the observed selection of same-year disturbed habitat, although change was not statistically significant (α 0.05). We caution the use of low-temporal resolution disturbance data to evaluate short-term impacts on wildlife and highlight the need for further development of probabilistic- and model-based techniques for overcoming spatial-temporal differences between datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asner GP (2013) Biological diversity mapping comes of age. Remote Sens 5:374–376. doi:10.3390/rs5010374

    Article  Google Scholar 

  • Benn B, Herrero S (2002) Grizzly bear mortality and human access in Banff and Yoho National Parks, 1971–98. Ursus 13:213–221

    Google Scholar 

  • Berland A, Nelson TA, Stenhouse G, Graham K, Cranston J (2008) The impact of landscape disturbance on grizzly bear habitat use in the Foothills Model Forest, Alberta, Canada. For Ecol Manag 256:1875–1883

    Article  Google Scholar 

  • Bourbonnais ML, Nelson TA, Cattet MR, Darimont CT, Stenhouse GB (2013) Spatial analysis of factors influencing long-term stress in the grizzly bear (Ursus arctos) population of Alberta, Canada. PLoS One 8(12), e83768

    Article  Google Scholar 

  • Boyce MS, Pitt J, Northrup JM, Morehouse AT, Knopff KH, Cristescu B, Stenhouse GB (2010) Temporal autocorrelation functions for movement rates from global positioning system radiotelemetry data. Philos Trans R Soc B 365:2213–2219

    Article  Google Scholar 

  • Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54:535–545

    Article  Google Scholar 

  • Cohen WB, Yang Z, Kennedy R (2010) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync Tools for calibration and validation. Remote Sens Environ 114:2911–2924

    Article  Google Scholar 

  • Gaulton R, Hilker T, Wulder MA, Coops NC, Stenhouse GB (2011) Characterizing stand replacing disturbance in western Alberta grizzly bear habitat, using a satellite-derived high temporal and spatial resolution change sequence. For Ecol Manag 261:865–877

    Article  Google Scholar 

  • Graham K, Boulanger J, Duval J, Stenhouse G (2010) Spatial and temporal use of roads by grizzly bears in west-central Alberta. Ursus 21:43–56

    Article  Google Scholar 

  • Gu Y, Wylie BK (2010) Detecting ecosystem performance anomalies for land management in the Upper Colorado River Basin using satellite observations, climate data, and ecosystem models. Remote Sens 2:1880–1891. doi:10.3390/rs2081880

    Article  Google Scholar 

  • He Y, Franklin SE, Guo X, Stenhouse GB (2009) Narrow-linear and small-area forest disturbance detection and mapping from high spatial resolution imagery. J Appl Remote Sens 3:033570

    Article  Google Scholar 

  • Healey SP, Cohen WB, Yang ZQ, Krankina ON (2005) Comparison of tasseled cap-based Landsat data structures for use in forest disturbance detection. Remote Sens Environ 97:301–310

    Article  Google Scholar 

  • Hebblewhite M, Haydon DT (2010) Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philos Trans R Soc B 365:2303–2312

    Article  Google Scholar 

  • Hilker T, Wulder MA, Coops NC, Linke J, McDermid G, Masek JG, Gao F, White JC (2009) A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens Environ 113:1613–1627

    Article  Google Scholar 

  • Huang C, Goward SN, Masek JG, Thomas N, Zhu Z, Vogelmann JE (2010) An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens Environ 114:183–198

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Article  Google Scholar 

  • Johnson CJ, Heard DC, Parker KL (2002) Expectations and realities of GPS animal location collars: results of three years in the field. Wildl Biol 8:153–159

    Google Scholar 

  • Justice CO, Vermote E, Townshend JRG, Defries R, Roy DP, Hall DK, Salomson VV, Privette JL, Riggs G, Strahler A, Lucht W, Myneni RB, Knyazkikhin S, Running SW, Nemani RR, Wan Z, Huete AR, van Leeuwen W, Wolfe RE, Giglio L, Muller J, Lewis P, Barnsley MJ (1998) The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans Geosci Remote Sens 36:1228–1249

    Article  Google Scholar 

  • Koehler GM, Maletzke BT, Von Kienast JA, Aubry KB, Wielgus RB, Naney RH (2007) Habitat fragmentation and the persistence of lynx populations in Washington State. J Wildl Manag 72:1518–1524

    Google Scholar 

  • Laberee K, Nelson TA, Stewart BP, McKay T, Stenhouse GB (2014) Oil and gas infrastructure and the spatial pattern of grizzly bear habitat selection in Alberta, Canada. Can Geogr 8(1):79–94

    Article  Google Scholar 

  • Linke J, Mcdermid GJ, Laskin DN, Mclane AJ, Pape A, Cranston J, Hall-Beyer M, Franklin SE (2009) A disturbance-inventory framework for flexible and reliable landscape monitoring. Photogramm Eng Remote Sens 75:981–996

    Article  Google Scholar 

  • Loarie SR, Tambling CJ, Asner GP (2013) Lion hunting behaviour and vegetation structure in an African savanna. Anim Behav 85(5):899–906

    Article  Google Scholar 

  • Long JA, Nelson TA (2013) A review of quantitative methods for movement data. Int J Geogr Inf Sci 27(2):292–318

    Article  Google Scholar 

  • Masek JG, Huang C, Wolfe R, Cohen W, Hall F, Kutler J, Nelson P (2008) North American forest disturbance mapped from a decadal Landsat record. Remote Sens Environ 112:2914–2926

    Article  Google Scholar 

  • Mohr CO (1947) Table of equivalent populations of North America. Am Midl Nat 37:223–249

    Article  Google Scholar 

  • Munro RHM, Nielsen SE, Price MH, Stenhouse GB, Boyce MS (2006) Seasonal and diel patterns of grizzly bear diet and activity in west-central Alberta. J Mammal 87:1112–1121

    Article  Google Scholar 

  • Ndegwa MC, Murayama Y (2009) Analysis of land use/cover changes and animal population dynamics in a wildlife sanctuary in East Africa. Remote Sens 1:952–970

    Article  Google Scholar 

  • Nielsen SE, Boyce MS, Stenhouse GB (2004a) Grizzly bears and forestry I. Selection of clearcuts by grizzly bears in west-central Alberta, Canada. For Ecol Manag 199:51–65

    Article  Google Scholar 

  • Nielsen SE, Herrero S, Boyce MS, Mace RD, Benn B, Gibeau ML, Jevons S (2004b) Modelling the spatial distribution of human-caused grizzly bear mortalities in the Central Rockies Ecosystem of Canada. Biol Conserv 120:101–113

    Article  Google Scholar 

  • Nielsen SE, Munro RHM, Bainbridge EL, Stenhouse GB, Boyce MS (2004c) Grizzly bears and forestry II. Distribution of grizzly bear foods in clearcuts of west-central Alberta, Canada. For Ecol Manag 199:67–82

    Article  Google Scholar 

  • Nielsen SE, Stenhouse GB, Boyce MS (2006) A habitat-based framework for grizzly bear conservation in Alberta. Biol Conserv 130:217–229

    Article  Google Scholar 

  • Schneider RR (2002) Alternative futures: Alberta’s boreal forest at the crossroads. The Federation of Alberta naturalists. Edmonton, Alberta

    Google Scholar 

  • Schneider RR, Stelfox JB, Boutin S, Wasel S (2003) Managing the cumulative impacts of land uses in the Western Canadian Sedimentary Basin: a modeling approach. Conserv Ecol 7:8

    Article  Google Scholar 

  • Smulders M, Nelson TA, Jelinski DE, Nielsen SE, Stenhouse GB (2010) A spatially explicit method for evaluating accuracy of species distribution models. Divers Distrib 16:996–1008

    Article  Google Scholar 

  • Smulders M, Nelson TA, Jelinski DE, Nielsen SE, Stenhouse GB, Laberee K (2012) Quantifying spatial-temporal patterns in wildlife ranges using STAMP: a grizzly bear example. Appl Geogr 35:124–131

    Article  Google Scholar 

  • Stewart BP, Nelson TA, Laberee K, Nielsen SE, Wulder MA, Stenhouse GB (2013) Quantifying grizzly bear selection of natural and anthropogenic edges. J Wildlife Manag Wildlife Monographs 77:957–964. doi:10.1002/jwmg.535

    Article  Google Scholar 

  • Sunde P, Olesen CR, Madsen TL, Haugaard L (2009) Behavioural responses of GPS-collared female red deer Cervus elaphus to driven hunts. Wildl Biol 15:454–460

    Article  Google Scholar 

  • Vermote EF, Tanre D, Deuze JL, Herman M, Morcrette JJ (1997) Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans Geosci Remote Sens 35:675–686

    Article  Google Scholar 

  • Wells AG, Wallin DO, Rice CG, Chang WY (2011) GPS bias correction and habitat selection by mountain goats. Remote Sens 3:435–459

    Article  Google Scholar 

  • White JC, Wulder MA, Gomez C, Stenhouse GB (2011) A history of habitat dynamics: characterizing 35 years of stand replacing disturbance. Can J Remote Sens 37:234–251

    Article  Google Scholar 

  • Woodcock CE, Allen R, Anderson M, Belward A, Bindschadler R, Cohen W, Gao F, Goward SN, Helder D, Helmer E, Nemani R, Oreopoulos L, Schott J, Thenkabail PS, Vermote EF, Vogelmann J, Wulder MA, Wynne R (2008) Free access to Landsat imagery. Science 320:1011

    Article  Google Scholar 

  • Wulder MA, Hall RJ, Coops NC, Franklin SE (2004) High spatial resolution remotely sensed data for ecosystem characterization. Bioscience 54:511–521

    Article  Google Scholar 

  • Wulder MA, White JC, Goward SN, Masek JG, Irons JR, Herold M, Cohen WB, Loveland TR, Woodcock CE (2008) Landsat continuity: issues and opportunities for land cover monitoring. Remote Sens Environ 112:955–969

    Article  Google Scholar 

  • Wulder MA, White JC, Masek JG, Dwyer J, Roy DP (2011) Continuity of Landsat observations: short term considerations. Remote Sens Environ 115:747–751

    Article  Google Scholar 

  • Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE (2012) Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122:2–10

    Article  Google Scholar 

  • Zhang X, Schaaf CB, Friedl MA, Strahler AH, Gao F, Hodges JCF (2002) MODIS tasseled cap transformation and its utility. In: Proceedings of the international geoscience remote sensing symposium 1063–1065 doi: 10.1109/IGARSS.2002.1025776

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trisalyn Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Her Majesty the Queen in Right of Canada

About this chapter

Cite this chapter

Brown, N.D.A. et al. (2016). An Approach for Determining Relationships Between Disturbance and Habitat Selection Using Bi-weekly Synthetic Images and Telemetry Data. In: Ban, Y. (eds) Multitemporal Remote Sensing. Remote Sensing and Digital Image Processing, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-47037-5_16

Download citation

Publish with us

Policies and ethics