Skip to main content

A Review of Multitemporal Synthetic Aperture Radar (SAR) for Crop Monitoring

  • Chapter
  • First Online:
Multitemporal Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 20))

Abstract

Synthetic Aperture Radars (SARs) transmit and receive energy at microwave frequencies. The response recorded by these sensors is largely a function of the structure and dielectric properties of the target. The structure of a canopy is different among crops, and changes as crops grow. SARs respond very well to these structural differences and thus these sensors are able to accurately identify crop type and have proven sensitive to several crop biophysical parameters (Leaf Area Index, biomass, canopy height). Although optical sensors have traditionally been used for crop monitoring, advances in SAR applications research coupled with availability of SAR data at different frequencies and polarizations has raised the profile of these sensors for agricultural monitoring. And the “all weather” capability of SARs makes their use in operational activities of particular interest. Advancements in SAR applications development, continued improved access to data, and a push to transfer SAR research methods to monitoring agencies will lead to an increased role of SAR in monitoring agricultural production. This chapter reviews SAR research as it relates to crop type and acreage estimation, as well as determination of crop condition and crop bio-physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberga V, Satalino G, Staykova DK (2008) Comparison of polarimetric SAR observables in terms of classification performance. Int J Remote Sens 29:4129–4150

    Article  Google Scholar 

  • Baghdadi N, Boyer N, Todoroff P, El Hajj M, Begue A (2009) Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island. Remote Sens Environ 113:1724–1738

    Article  Google Scholar 

  • Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ 35:161–173

    Article  Google Scholar 

  • Becker-Reshef I, Justice C, Sullivan M, Vermote E, Tucker C, Anyamba A, Small J, Pak E, Masuoka E, Schmaltz J, Hansen M, Pittman K, Birkett C, Williams D, Reynolds C, Doorn B (2010) Monitoring global croplands with coarse resolution Earth observations: the Global Agriculture Monitoring (GLAM) project. Remote Sens 2:1589–1609

    Article  Google Scholar 

  • Bouman BAM, Hoekman D (1993) Multi-temporal, multi-frequency radar measurements of agricultural crops during the Agriscatt-88 campaign in The Netherlands. Int J Remote Sens 14:1595–1614

    Article  Google Scholar 

  • Bouman BAM, Uenk D (1992) Crop classification possibilities with radar in ERS-1 and JER-1 configuration. Remote Sens Environ 40:1–13

    Article  Google Scholar 

  • Brisco B, Protz R (1980) Corn field identification accuracy using airborne radar imagery. Can J Remote Sens 6:15–24

    Article  Google Scholar 

  • Brisco B, Brown RJ, Gairns JG, Snider B (1991) Temporal radar observations of crops in western Canada. Can J Remote Sens 18:14–21

    Article  Google Scholar 

  • Brown RJ, Manore MJ, Poirier S (1992) Correlations between X-, C and L-band imagery within an agricultural environment. Int J Remote Sens 13:1645–1661

    Article  Google Scholar 

  • Brown L, Chen JM, Leblanc SG, Cihlar J (2000) A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: an image and model analysis. Remote Sens Environ 71:16–25

    Article  Google Scholar 

  • Charbonneau FJ, Brisco B, Raney RK, McNairn H, Liu C, Vachon PW, Shang J, DeAbreu R, Champagne C, Merzouki M, Geldsetzer T, Trudel M (2010) Compact polarimetry overview and applications assessment. Can J Remote Sens 36:298–315

    Article  Google Scholar 

  • Chen JM, Cihlar J (1996) Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens Environ 55:153–162

    Article  Google Scholar 

  • Chen C, McNairn H (2006) A neural network integrated approach for rice crop monitoring. Int J Remote Sens 27:1367–1393

    Article  Google Scholar 

  • Chen KS, Huang WP, Tsay DH, Amar F (1996) Classification of multifrequency polarimetric SAR imagery using a dynamic learning neural network. IEEE Trans Geosci Remote Sens 34:814–820

    Article  Google Scholar 

  • Chen J, Lin H, Pei Z (2007) Application of ENVISAT ASAR data in mapping rice crop growth in southern China. IEEE Geosci Remote Sens Lett 4:431–435

    Article  Google Scholar 

  • Choudhury I, Chakraborty M (2006) SAR signature investigation of rice crop using RADARSAT data. Int J Remote Sens 27:519–534

    Article  Google Scholar 

  • Choudhury BJ, Ahmed NU, Idso SB, Reginato RJ, Daughtry CST (1994) Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sens Environ 50:1–17

    Article  Google Scholar 

  • Claverie M, Demarez V, Duchemin B, Hagolle O, Ducrot D, Marais-Sicre C, Dejoux J-F, Huc M, Keravec P, Béziat P, Fieuzal R, Ceschia E, Dedieu G (2012) Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sens Environ 124:844–857

    Article  Google Scholar 

  • Clevers JGPW, van Leeuwen HJC (1996) Combined use of optical and microwave remote sensing data for crop growth monitoring. Remote Sens Environ 56:42–51

    Article  Google Scholar 

  • Cloude SR, Pottier E (1997) An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens 35:68–78

    Article  Google Scholar 

  • Deschamps B, McNairn H, Shang J, Jiao X (2012) Towards operational radar-only crop type classification: comparison of a traditional decision tree with a random forest classifier. Can J Remote Sens 38:60–68

    Article  Google Scholar 

  • Dobson MC, Ulaby FT (1998) Mapping soil moisture distribution with imaging radar. In: Henderson FM, Lewis AJ (eds) Principles and applications of imaging radar, manual of remote sensing, vol 2, 3rd edn. Wiley, New York, pp 407–433

    Google Scholar 

  • Dobson MC, Pierce LE, Ulaby FT (1996) Knowledge-based land-cover classification using ERS-1/JERS-1 SAR composites. IEEE Trans Geosci Remote Sens 34:83–99

    Article  Google Scholar 

  • European Space Agency (2012) The Earth observation handbook: 2012 special edition for Rio + 20. European Space Agency, Noordwijk

    Google Scholar 

  • Evans DL, Smith MO (1991) Separation of vegetation and rock signatures in thematic mapper and polarimetric SAR images. Remote Sens Environ 34:63–75

    Article  Google Scholar 

  • Ferrazzoli P, Paloscia S, Pampaloni P, Schiavon G, Solimini D, Coppo P (1992) Sensitivity of microwave measurements to vegetation biomass and soil moisture content: a case study. IEEE Trans Geosci Remote Sens 30:750–756

    Article  Google Scholar 

  • Ferrazzoli P, Paloscia S, Pampaloni P, Schiavon G, Sigismondi S, Solimini D (1997) The potential of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass. IEEE Trans Geosci Remote Sens 35:5–17

    Article  Google Scholar 

  • Ferrazzoli P, Guerriero L, Schiavon G (1999) Experimental and model investigation on radar classification capability. IEEE Trans Geosci Remote Sens 37:960–968

    Article  Google Scholar 

  • Fisette T, Rollin P, Aly Z, Campbell L, Daneshfar B, Filyer P, Smith A, Davidson A, Shang J, Jarvis I (2013) AAFC annual crop inventory: status and challenges. The second international conference on agro-geoinformatics 2013, Fairfax, Virginia, 12–16 August 2013

    Google Scholar 

  • Foody GM, McCulloch MB, Yates WB (1994) Crop classification from C-Band polarimetric radar data. Int J Remote Sens 15:2871–2885

    Article  Google Scholar 

  • Freeman A, Durden SL (1998) A three component scattering model for polarimetric SAR data. IEEE Trans Geosci Remote Sens 36:963–974

    Article  Google Scholar 

  • Gitelson AA (2004) Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J Plant Physiol 161:165–173

    Article  Google Scholar 

  • Gitelson AA (2011) Remote sensing estimation of crop biophysical characteristics at various scales. Hyperspectral remote sensing of vegetation. CRC Press, Boca Raton, pp 329–358

    Google Scholar 

  • Groot JS, van den Broek AC, Freeman A (1992) An investigation of the potential of polarimetric SAR data for discrimination between agricultural crops. In: Proceedings of the MAESTRO-1/AGRISCATT: radar techniques for forestry and agricultural applications, Final Workshop, ESTEC, Noordwijk, The Netherlands, 6–7 March 1992

    Google Scholar 

  • Guindon B, Teillet PM, Goodenough DG, Palimaka JJ, Sieber A (1984) Evaluation of the crop classification performance of X, L and C-band SAR imagery. Can J Remote Sens 10:4–16

    Article  Google Scholar 

  • Hill MJ, Ticehurst CJ, Lee J-S, Grunes MR, Donald GE, Henry D (2005) Integration of optical and radar classifications for mapping pasture type in western Australia. IEEE Trans Geosci Remote Sens 43:1665–1681

    Article  Google Scholar 

  • Hinds MR, Sofko GJ, Wacker AG, Koehler JA (1993) Ku-band polarization characteristics of crops and fallow, radar polarimetry. Proc SPIE 1748:47–58

    Article  Google Scholar 

  • Hoekman DH, Vissers AM (2003) A new polarimetric classification approach evaluated for agricultural crops. IEEE Trans Geosci Remote Sens 41:2881–2889

    Article  Google Scholar 

  • Hoekman DH, Vissers AM, Tran TN (2011) Unsupervised full-polarimetric SAR data segmentation as a tool for classification of agricultural areas. IEEE J Select Top Appl Earth Observ Remote Sens 4:402–411

    Article  Google Scholar 

  • Huete AR (1988) A Soil-Adjusted Vegetation Index (SAVI). Remote Sens Environ 25:295–309

    Article  Google Scholar 

  • Inoue Y, Kurosu T, Maeno H, Uratsuka S, Kozu T, Dabrowska-Zielinska K, Qi J (2002) Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables. Remote Sens Environ 2–3:194–204

    Article  Google Scholar 

  • Jayne TS, Rashid S (2010) The value of accurate crop production forecasts. Fourth African Agricultural Markets Program (AAMP) policy symposium, Lilongwe, Malawi, 6–10 September 2010

    Google Scholar 

  • Jégo G, Pattey E, Liu J (2012) Using Leaf Area Index, retrieved from optical imagery, in the STICS crop model for predicting yield and biomass of field crops. Field Crop Res 131:63–74

    Article  Google Scholar 

  • Jia K, Li Q, Tian Y, Wu B, Zhang F, Meng J (2012) Crop classification using multi-configuration SAR data in the North China Plain. Int J Remote Sens 33:170–183

    Article  Google Scholar 

  • Jiao X, McNairn H, Shang J, Pattey E, Liu J, Champagne C (2011) The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index. Can J Remote Sens 37:69–81

    Article  Google Scholar 

  • Kim Y, van Zyl JJ (2009) A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Trans Geosci Remote Sens 47:2519–2527

    Article  Google Scholar 

  • Kim Y, Jackson T, Bindlish R, Hoonyol L, Hong S (2013) Monitoring soybean growth using L-, C-, and X-band scatterometer data. Int J Remote Sens 34:4069–4082

    Article  Google Scholar 

  • Le Toan T, Ribbes F, Li-Fang W, Floury N, Kung-Hau D, Jin Au K, Fujita M, Kurosu T (1997) Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans Geosci Remote Sens 35:41–56

    Article  Google Scholar 

  • Lee JS, Pottier E (2009) Polarimetric radar imaging: from basics to applications. CRC Press, New York

    Book  Google Scholar 

  • Li Y, Liao Q, Li X, Liao S, Chi G, Peng S (2003) Towards an operational system for regional-scale rice yield estimation using a time-series of Radarsat ScanSAR images. Int J Remote Sens 24:4207–4220

    Article  Google Scholar 

  • Liu J, Pattey E, Miller JR, McNairn H, Smith A, Hu B (2010) Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sens Environ 114:1167–1177

    Article  Google Scholar 

  • Liu C, Shang J, Vachon PW, McNairn H (2013) Multiyear crop monitoring using polarimetric RADARSAT-2 data. IEEE Trans Geosci Remote Sens 51:2227–2240

    Article  Google Scholar 

  • Maity S, Patnaik C, Panigraphy S (2004) Analysis of temporal backscattering of cotton crops using a semi-empirical model. IEEE Trans Geosci Remote Sens 42:577–587

    Article  Google Scholar 

  • Mattia F, Toan TL, Picard G, Posa FI, D’Alessio A, Notarnicola C, Gatti AM, Rinaldi M, Satalino G, Pasquariello G (2003) Multitemporal C-band radar measurements on wheat fields. IEEE Trans Geosci Remote Sens 41:1551–1558

    Article  Google Scholar 

  • McNairn H, Brisco B (2004) The application of C-band polarimetric SAR for agriculture: a review. Can J Remote Sens 30:525–542

    Article  Google Scholar 

  • McNairn H, Shang J (2014) Evaluation of C-band polarimetric synthetic aperture radar for crop classification. In: Principles and applications of PolInSAR, European Space Agency (ESTEC), Noordwijk, The Netherlands, in press

    Google Scholar 

  • McNairn H, van der Sanden JJ, Brown RJ, Ellis J (2000) The potential of RADARSAT-2 for crop mapping and assessing crop condition. In: Proceedings of the 2nd international conference on geospatial information in agriculture and forestry, Lake Buena Vista, Florida, 10–12 January 2000

    Google Scholar 

  • McNairn H, Ellis J, van der Sanden JJ, Hirose T, Brown RJ (2002) Providing crop information using RADARSAT-1 and satellite optical imagery. Int J Remote Sens 23:851–870

    Article  Google Scholar 

  • McNairn H, Shang J, Jiao X, Champagne C (2009a) The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification. IEEE Trans Geosci Remote Sens 47:3981–3992

    Article  Google Scholar 

  • McNairn H, Champagne C, Shang J, Holmstrom D, Reichert G (2009b) Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J Photogramm Remote Sens 64:434–449

    Article  Google Scholar 

  • McNairn H, Shang J, Jiao X, Deschamps B (2012) Establishing crop productivity using RADARSAT-2. International archives of the photogrammetry, remote sensing and spatial information sciences, Volume XXXIX-B8, 2012 XXII ISPRS Congress, Melbourne, Australia, 25 August–01 September 2012

    Google Scholar 

  • McNairn H, Kross A, Lapen D, Caves R, Shang J (2014a) Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2. Int J Appl Earth Obs Geoinf 28:252–259

    Google Scholar 

  • McNairn H, Wiseman G, Powers J, Merzouki A, Shang J (2014b) Assessment of disease risk in canola using multi-frequency SAR: preliminary results. In 10th European conference on synthetic aperture radar, Berlin, Germany, 2–6 June 2014

    Google Scholar 

  • Moran MS, Moreno JF, Mateo MPC, de la Cruz DF, Montoro A (2012) A RADARSAT-2 quad- polarized time series for monitoring crop and soil conditions in Barrax. Spain IEEE Trans Geosci Remote Sens 50:1057–1070

    Article  Google Scholar 

  • Paloscia S (2002) A summary of experimental results to assess the contribution of SAR for mapping vegetation biomass and soil moisture. Can J Remote Sens 28:246–261

    Article  Google Scholar 

  • Paris JF (1983) Radar backscattering properties of corn and soybeans at frequencies of 1.6, 4.75, and 13.3 GHz. IEEE Trans Geosci Remote Sens 21:392–400

    Article  Google Scholar 

  • Paris JF (1986) The effect of leaf size on the microwave backscattering by corn. Remote Sens Environ 19:81–95

    Article  Google Scholar 

  • Pei Z, Zhang S, Guo L, McNairn H, Shang J, Jiao X (2011) Rice identification and change detection using TerraSAR-X data. Can J Remote Sens 37:151–156

    Article  Google Scholar 

  • Prasad R (2011) Estimation of kidney bean crop variables using ground-based scatterometer data at 9.89 GHz. Int J Remote Sens 32:31–48

    Article  Google Scholar 

  • Raney RK (1998) Radar fundamentals: technical perspective. In: Henderson FM, Lewis AJ (eds) Principles and applications of imaging radar, manual of remote sensing, vol 2, 3rd edn. Wiley, New York, pp 9–130

    Google Scholar 

  • Raney RK (2006) Dual-polarized SAR and Stokes parameters. IEEE Geosci Remote Sens Lett 3:317–319

    Article  Google Scholar 

  • Ribbes F (1999) Rice field mapping and monitoring with RADARSAT data. Int J Remote Sens 20:745–765

    Article  Google Scholar 

  • Shang J, Jiao X, McNairn H, Kovacs J, Waters D, Ma B, Geng X (2013). Tracking crop phenological development of spring wheat using Synthetic Aperture Radar (SAR) in northern Ontario, Canada. The second international conference on agro-geoinformatics 2013, Fairfax, Virginia, 12–16 August 2013

    Google Scholar 

  • Shang, J., Liu, J., Huffman, T., Ma, B., Zhao, T., McNairn, H., and Jiao, X. (2014). Using Earth observation to monitor corn growth in Ontario, Canada. In: Proceedings of the 68th Northeastern corn improvement conference, Ohio Agricultural Research and Development Centre, Wooster, Ohio, USA, 14–15 February, 2014

    Google Scholar 

  • Shao Y, Fan X, Liu H, Xiao J, Ross S, Brisco B, Brown R, Staples G (2001) Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sens Environ 76:310–325

    Article  Google Scholar 

  • Skriver H (2012) Crop classification by multitemporal C- and L-Band single- and dual-polarization and fully polarimetric SAR. IEEE Trans Geosci Remote Sens 50:2138–2149

    Article  Google Scholar 

  • Skriver H, Mattia F, Satalino G, Balenzano A, Pauwels VRN, Verhoest NEC, Davidson M (2011) Crop classification using short-revisit multitemporal SAR data. IEEE J Select Top Appl Earth Observ Remote Sens 4:423–432

    Article  Google Scholar 

  • Thomson KPB, Edwards G, Landry R, Jaton A, Cadieux SP, Gwyn QHJ (1990) SAR applications in agriculture: multiband correlation and segmentation. Can J Remote Sens 16:47–54

    Article  Google Scholar 

  • Ulaby FT, Allen CT, Eger G III, Kanemasu E (1984) Relating the microwave backscattering coefficient to leaf area index. Remote Sens Environ 14:113–133

    Article  Google Scholar 

  • Wiseman G, McNairn H, Homayouni S, Shang J (2014) RADARSAT-2 polarimetric SAR response to crop biomass for agricultural production monitoring. J Select Top Appl Earth Observ Remote Sens 7(11):4461–4471

    Article  Google Scholar 

  • Wooding MG (1992) Radar system configurations for crop and forest discrimination using AGRISCATT 8 data of the Feltwell Test Site. In: Proceedings of MAESTRO-1/AGRISCATT: Radar techniques for forestry and agricultural applications: Final Workshop, ESTEC, Noordwijk, The Netherlands, 6–7 March 1992

    Google Scholar 

  • Yang S, Shuanghe S, Bingbai L, Le Toan T, Wei H (2008) Rice mapping and monitoring using ENVISAT ASAR data. IEEE Geosci Remote Sens Lett 5:108–112

    Article  Google Scholar 

  • Zhang Y, Wang C, Wu J, Qi J, Salas WA (2009) Mapping paddy rice with multitemporal ALOS/PALSAR imagery in southeast China. Int J Remote Sens 30:6301–6315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather McNairn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Her Majesty the Queen in Right of Canada

About this chapter

Cite this chapter

McNairn, H., Shang, J. (2016). A Review of Multitemporal Synthetic Aperture Radar (SAR) for Crop Monitoring. In: Ban, Y. (eds) Multitemporal Remote Sensing. Remote Sensing and Digital Image Processing, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-47037-5_15

Download citation

Publish with us

Policies and ethics