Skip to main content

Observing the Response of Terrestrial Vegetation to Climate Variability Across a Range of Time Scales by Time Series Analysis of Land Surface Temperature

  • Chapter
  • First Online:
Multitemporal Remote Sensing

Abstract

Satellite observations of the terrestrial biosphere cover a period of time sufficiently extended to allow the calculation of a reliable climatology. The latter is particularly relevant for studies of vegetation response to climate variability. Observations from space of the land surface are hampered by clouds at shorter wavelength and affected by water in the atmosphere in the microwave range. Both polar orbiting and geostationary satellites have a revisit frequency high enough to allow for some redundancy relative to the processes being observed, so that time series where a fraction of observations are removed and the resulting gaps filled are still very useful to monitor land surface processes. Two examples illustrate this concept in two different spectral regions: Thermal Infrared (TIR) and observations of land surface temperature to study the thermal behavior of the land surface in response to weather and climate and 37 GHz observations of the polarization difference in brightness temperature to retrieve the fractional abundance of water-saturated soil. Three applications of time series of land surface temperature are presented: (a) monitoring of spectral thermal admittance of the land surface; (b) estimation and mapping of air temperature and (c) monitoring of thermal load to assess the risk of forest fires.

Two methods were applied to identify and remove anomalous observations (outliers) and to fill the resulting gaps: Harmonic ANalysis of Time Series (HANTS) and the Multichannel Singular Spectrum Analysis (M-SSA). The HANTS algorithm has been widely used to reconstruct time series of Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), Land Surface Temperature (LST) as well as the polarization difference brightness temperature (PDBT) during the past 20 years to remove random noise or eliminate cloud/snow contamination. The M-SSA, an advanced methodology for time series analysis, was utilized to reconstruct gap-free LST time series using both the spatial and the temporal information content in the data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfieri S, Lorenzi FD, Menenti M (2013) Mapping air temperature using time series analysis of LST: the SINTESI approach. Nonlinear Process Geophys 20(4):513–527

    Article  Google Scholar 

  • Azzali S, Menenti M (2000) Mapping vegetation-soil-climate complexes in southern Africa using temporal Fourier analysis of NOAA-AVHRR NDVI data. Int J Remote Sens 21(5):973–996

    Article  Google Scholar 

  • Bajocco S, Ricotta C (2007) Evidence of selective burning in Sardinia (Italy): which land-cover classes do wildfires prefer? Landsc Ecol 23:241–248

    Article  Google Scholar 

  • Bowen IS (1926) The ratio of heat losses by conduction and by evaporation from any water surface. Phys Rev 27(6):779–787

    Article  Google Scholar 

  • Brodzik M, Knowles K (2002) EASE-Grid: a versatile set of equal-area prjoections and grids. Paper presented at the national center for geographic information & analysis, Santa Barbara, California, USA

    Google Scholar 

  • Broomhead DS, King GP (1986) On the qualitative analysis of experimental dynamical systems. In: Sarkar S (ed) Nonlinear phenomena and chaos. Hilger, Boston, pp 113–144

    Google Scholar 

  • Brutsaert WH (1982) Evaporation into the atmosphere. Reidel, Dordrecht

    Book  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Elsner JB, Tsonis AA (1996) Singular spectrum analysis: a new tool in time series analysis. Plenum Press, New York

    Book  Google Scholar 

  • Esposito S (2010) Prime Caratterizzazioni agro-climatiche delle aree di studio di Agroscenari mediante i dati dei nodi di griglia, Technical Note. Agroscenari, CRA-CMA, Rome, Italy, 30 pp

    Google Scholar 

  • Faivre R (2014) Multi-sensor remote sensing parameterization of heat flux over heterogeneous land surface. Delft University of Technology, Delft

    Google Scholar 

  • Famiglietti JS, Wood EF (1994) Multiscale modeling of spatially variable water and energy balance processes. Water Resour Res 30:3061–3078

    Article  Google Scholar 

  • Ghafarian HR (2015) Reconstruction of gap-free time series satellite observations of land surface temperature to model spectral soil thermal admittance. Delft University of Technology, Delft

    Google Scholar 

  • Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):3.1–3.41

    Article  Google Scholar 

  • Golyandina N, Nekrutkin V, Zhigljavsky A (eds) (2001) Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC, Washington, DC

    Google Scholar 

  • Holmes TRH, De Jeu RAM, Owe M, Dolman AJ (2009) Land surface temperature from Ka band (37 GHz) passive microwave observations. J Geophys Res-Atmos 114. doi:Artn D04113 doi:10.1029/2008jd010257

  • Horton R, Wierenga PJ (1983) Estimating the soil heat flux from observations of soil temperature near the surface1. Soil Sci Soc Am J 47(1):14–20. doi:10.2136/sssaj1983.03615995004700010003x

    Article  Google Scholar 

  • Idso SB, Jackson RD, Reginato RJ (1976) Compensating for environmental variability in the thermal inertia approach to remote sensing of soil moisture. J Appl Meteorol 15(8):811–817. doi:10.1175/1520-0450(1976)015<0811:cfevit>2.0.co;2

    Article  Google Scholar 

  • Jia L, Shang H, Hu G, Menenti M (2011) Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data. Hydrol Earth Syst Sci 15:1047–1064

    Article  Google Scholar 

  • Julien Y, Sobrino JA, Verhoef W (2006) Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sens Environ 103(1):43–55. doi:10.1016/j.rse.2006.03.011

    Article  Google Scholar 

  • Kirdiashev KP, Chucklantsev AA, Shutko A (1979) Microwave radiation of the earth’s surface in the presence of vegetation cover. Radiotecknica 24:256–264

    Google Scholar 

  • Menenti M (1984) Physical aspects of and determination of evaporation in deserts applying remote sensing techniques. Report 10 (special issue), Institute for Land and Water Management Research (ICW), The Netherlands

    Google Scholar 

  • Menenti M, Azzali S, Verhoef W, van Swol R (1993) Mapping agroecological zones and time lag in vegetation growth by means of fourier analysis of time series of NDVI images. Adv Space Res 13(5):233–237

    Article  Google Scholar 

  • Menenti M, Jia L, Azzali S, Roerink G, Gonzalez-Loyarte M, Leguizamon S (2010) Analysis of vegetation response to climate variability using extended time series of multispectral satellite images. Remote sensing Optical Observation of Vegetation Properties, pp 131–165

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234

    Google Scholar 

  • Moody A, Johnson D (2001) Land surface ohenoogy from AVHRR using discrete Fourier transform. Remote Sens Environ 75:305–323

    Article  Google Scholar 

  • Morton FI (1983) Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J Hydrol 66(1–4):1–76

    Article  Google Scholar 

  • Musial JP, Verstraete MM, Gobron N (2011) Technical note: comparing the effectiveness of recent algorithms to fill and smooth incomplete and noisy time series. Atmos Chem Phys 11:7905–7923

    Article  Google Scholar 

  • Penman H (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A Math Phys Sci 193:120–146

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92

    Article  Google Scholar 

  • Roerink GJ, Menenti M (2000) Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int J Remote Sens 21(9):1911–1917

    Article  Google Scholar 

  • Roerink GJ, Menenti M, Verhoef W (2000) Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int J Remote Sens 21(9):1911–1917

    Article  Google Scholar 

  • Roerink GJ, Menenti M, Soepboer W, Su Z (2003) Assessment of climate impact on vegetation dynamics by using remote sensing. Phys Chem Earth, Parts A/B/C 28(1):103–109

    Article  Google Scholar 

  • Sellers WD (1965) Physical climatology. University of Chicago Press, Chicago

    Google Scholar 

  • Shang H, Jia J, Menenti M (2012) Analyzing the inundation patterns in Asia floodplains by passive microwave. Paper presented at the SPIE Asia-Pacific, Kyoto, 21 November 2012

    Google Scholar 

  • Shang H, Jia L, Menenti M (2015) Analyzing the inundation pattern of the Poyang lake floodplain by passive microwave data. J Hydrometeorol 16(2):652–667

    Article  Google Scholar 

  • Shen S, Leptoukh GG (2011) Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environ Res Lett 6:045206

    Article  Google Scholar 

  • Su Z, Menenti M (1999) Mesoscale climate hydrology: the contribution of the new observing systems. Report USP-2. Publications of the National Remote Sensing Board (BCRS),141p

    Google Scholar 

  • van Wijk WR, De Vries DA (1963) Periodic temperature variations in a homogenous soil. In: van Wijk WR (ed) Physics of plant environment. North-Holland, Amsterdam, pp 102–143

    Google Scholar 

  • Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena 58(1–4):95–126. doi:10.1016/0167-2789(92)90103-t

    Article  Google Scholar 

  • Verhoef W (1996) Application of Harmonic Analysis of NDVI Time Series (HANTS). In: Fourier analusis of temporal NDVI in southern Africa and America continent. Dlo Winand Staring Center, Wageningen

    Google Scholar 

  • Verhoef W, Menenti M, Azzali S (1996) Cover A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981–1992). Int J Remote Sens 17(2):231–235

    Article  Google Scholar 

  • Wang J, Bras RL, Sivandran G, Knox RG (2010) A simple method for the estimation of thermal inertia. Geophys Res Lett 37(5), L05404. doi:10.1029/2009gl041851

    Article  Google Scholar 

  • Wigneron JP, Kerr Y, Chanzy A, Jin YQ (1993) Inversion of surface parameters from passive microwave measurements over a soybean field. Remote Sens Environ 46(1):61–72

    Article  Google Scholar 

  • Yan H, Zhang J, Hou J, Hea J (2009) Estimation of air temperature from MODIS data in east China. Int J Remote Sens 30:6261–6275

    Article  Google Scholar 

  • Yésou H, Coauthors (2011) Nine years of water resources monitoring over the middle reaches of the Yangtze River, with ENVISAT, MODIS, Beijing-1 time series, Altimetric data and field measurements. Lakes Reservoirs 16:231–247

    Article  Google Scholar 

  • Zhou J, Jia L, Menenti M (2015) Reconstruction of global MODIS NDVI time series: performance of Harmonic ANalysis of Time Series (HANTS). Remote Sens Environ 163:217–228

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Menenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Menenti, M., Malamiri, H.R.G., Shang, H., Alfieri, S.M., Maffei, C., Jia, L. (2016). Observing the Response of Terrestrial Vegetation to Climate Variability Across a Range of Time Scales by Time Series Analysis of Land Surface Temperature. In: Ban, Y. (eds) Multitemporal Remote Sensing. Remote Sensing and Digital Image Processing, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-47037-5_14

Download citation

Publish with us

Policies and ethics