Abstract
This chapter discusses the topic of modeling and forecasting volatility in emerging market and presents the strength and weakness of the several high-frequency based approaches available in the literature. We compare the forecasting performance of traditional GARCH with high-frequency based models namely, HAR-RV, HAR-RV-J, and HAR-RV-CJ under the financial crisis and non-financial crisis periods. We extend our study scope by focusing not only on general market index BIST-30, but also on each constituent of market index. Our empirical results indicate that the global financial crisis does not affect the forecasting performance of the models in emerging markets. All high-frequency based volatility forecasting models perform better than the traditional ARCH-class models in both non-crisis and crisis periods. We conclude our paper with the statement that high-frequency based models do not affect the structural break in the underlying process. The best outperforming model among the high-frequency based volatility models for both stable and turmoil period is HAR-RV-CJ model. The empirical findings for the individual stocks are consistent with the general market index ISE-30.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In financial markets, heterogeneity may arise for many different reasons, e.g., differences in the time horizon, agents’ endowments, institutional constrains, risk profiles, and geographical locations (Corsi 2009).
- 2.
Realized variance is a conditionally unbiased estimator of daily conditional variance, and its main advantage is that it is a more efficient estimator than the others (Patton 2011).
References
Aït-Sahalia Y, Jacod J (2010) Analyzing the spectrum of asset returns: jump and volatility components in high frequency data (No. w15808). National Bureau of Economic Research
Aït-Sahalia Y, Mancini L (2008) Out of sample forecasts of quadratic variation. J Econometr 147(1):17–33
Andersen TG, Bollerslev T (1998a) Answering the skeptics: yes, standard volatility models do provide accurate forecasts. Int Econ Rev 39:885–905
Andersen TG, Bollerslev T (1998b) Deutsche mark–dollar volatility: intraday activity patterns, macroeconomic announcements, and longer run dependencies. J Financ 53(1):219–265
Andersen TG, Bollerslev T, Diebold FX, Ebens H (2001) The distribution of realized stock return volatility. J Financ Econ 61(1):43–76
Andersen TG, Bollerslev T, Diebold FX, Labys P (2003) Modeling and forecasting realized volatility. Econometrica 71(2):579–625
Andersen TG, Bollerslev T, Diebold FX (2007) Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. Rev Econ Stat 89(4):701–720
Barndorff‐Nielsen OE, Shephard N (2002) Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J R Stat Soc Ser B Methodol 64(2):253–280
Barndorff-Nielsen OE, Shephard N (2004) Power and bipower variation with stochastic volatility and jumps. J Financ Econometr 2(1):1–37
Barndorff-Nielsen OE, Shephard N (2006) Econometrics of testing for jumps in financial economics using bipower variation. J Financ Econometr 4(1):1–30
Barndorff‐Nielsen OE, Hansen PR, Lunde A, Shephard N (2009) Realized kernels in practice: trades and quotes. Econometr J 12(3):C1–C32
Becker R, Clements AE, White SI (2007) Does implied volatility provide any information beyond that captured in model-based volatility forecasts? J Bank Financ 31(8):2535–2549
Becker R, Clements AE, McClelland A (2009) The jump component of S&P 500 volatility and the VIX index. J Bank Financ 33(6):1033–1038
Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econometrics 31(3):307–327
Chan KF, Gray P, Van Campen B (2008) A new approach to characterizing and forecasting electricity price volatility. Int J Forecast 24(4):728–743
Chatfield C (1988) What is the ‘best’ method of forecasting? J Appl Stat 15(1):19–38
Chow GC (1960) Tests of equality between sets of coefficients in two linear regressions. Econometrica 591–605
Corsi F (2004) A simple long memory model of realized volatility. Available at SSRN 626064
Corsi F (2009) A simple approximate long-memory model of realized volatility. J Financ Econometr nbp001
Davidson J (2012) Moment and memory properties of linear conditional heteroscedasticity models, and a new model. J Bus Econ Stat 22:16–29
Diebold FX, Mariano RS (2012) Comparing predictive accuracy. J Bus Econ Stat 13:253–263
Ding Z, Granger CW, Engle RF (1993) A long memory property of stock market returns and a new model. J Empir Financ 1(1):83–106
Dungey M, Fry RA, Gonzalez-Hermosillo B, Martin VL (2005) Empirical modeling of contagion: a review of methodologies. Quant Financ 5(1):9–24
Dungey M, Fry-McKibbin R, Linehan V (2014) Chinese resource demand and the natural resource supplier. Appl Econ 46(2):167–178
Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50:987–1007
Engle RF, Ng VK (1993) Measuring and testing the impact of news on volatility. J Financ 48(5):1749–1778
Engle RF, Patton AJ (2001) What good is a volatility model. Quant Financ 1(2):237–245
Favero CA, Giavazzi F (2002) Is the international propagation of financial shocks non-linear?: Evidence from the ERM. J Int Econ 57(1):231–246
Ghysels E, Santa-Clara P, Valkanov R (2006) Predicting volatility: getting the most out of return data sampled at different frequencies. J Econometr 131(1):59–95
Hamilton JD (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57:357–384
Hansen BE (1992) The likelihood ratio test under nonstandard conditions: testing the Markov switching model of GNP. J Appl Econometr 7(S1):S61–S82
Hansen PR, Lunde A (2006) Realized variance and market microstructure noise. J Bus Econ Stat 24(2):127–161
Haugom E, Westgaard S, Solibakke PB, Lien G (2010) Modelling day ahead Nord Pool forward price volatility: realized volatility versus GARCH models. In: 2010 7th international conference on the European Energy Market (EEM). IEEE, pp 1–9
Kaminsky GL, Schmukler SL (1999) What triggers market jitters?: a chronicle of the Asian crisis. J Int Money Financ 18(4):537–560
Klüppelberg C, Lindner A, Maller R (2004) A continuous-time GARCH process driven by a Lévy process: stationarity and second-order behaviour. J Appl Probab 41(3):601–622
Koopman SJ, Jungbacker B, Hol E (2005) Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements. J Empir Financ 12(3):445–475
Liu C, Maheu JM (2005) Modeling and forecasting realized volatility: the role of power variation. University of Toronto technical report (November 2005)
Liu LY, Patton AJ, Sheppard K (2015) Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. J Econometr 187(1):293–311
Lowell J, Neu CR, Tong D (1998) Financial crises and contagion in emerging market countries (No. RAND/MR-962). RAND, Santa Monica, CA
Ma F, Wei Y, Huang D, Chen Y (2014) Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility. Phys Stat Mech Appl 405:171–180
Mincer JA, Zarnowitz V (1969) The evaluation of economic forecasts. In: Economic forecasts and expectations: analysis of forecasting behavior and performance. NBER, pp 3–46
Müller UA, Dacorogna MM, Davé RD, Pictet OV, Olsen RB, Ward JR (1993) Fractals and intrinsic time: a challenge to econometricians. Unpublished manuscript, Olsen & Associates, Zürich
NBER (2010) Business cycle dating committee report technical report. National Bureau of Economic Research
Nelson DB (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59:347–370
Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. J Econometr 160(1):246–256
Poon SH, Granger CW (2003) Forecasting volatility in financial markets: a review. J Econ Lit 41(2):478–539
Rather AM, Agarwal A, Sastry VN (2015) Recurrent neural network and a hybrid model for prediction of stock returns. Expert Syst Appl 42(6):3234–3241
Reider R (2009) Volatility forecasting II: stochastic volatility models and empirical evidence
Rodrik D (2009) The Turkish economy after the crisis, Turkish economic association discussion paper 2009/9, December, 2009
Sentana E (1995) Quadratic ARCH models. Rev Econ Stud 62(4):639–661
Tse YK (1998) The conditional heteroscedasticity of the yen-dollar exchange rate. J Appl Econometr 13(1):49–55
West KD (1996) Asymptotic inference about predictive ability. Econometrica 64:1067–1084
Witt SF, Witt CA (1995) Forecasting tourism demand: a review of empirical research. Int J Forecast 11(3):447–475
Yalama A, Celik S (2013) Real or spurious long memory characteristics of volatility: empirical evidence from an emerging market. Econ Model 30:67–72
Zakoian JM (1994) Threshold heteroskedastic models. J Econ Dyn Control 18(5):931–955
Zhou H, Zhu JQ (2012) An empirical examination of jump risk in asset pricing and volatility forecasting in China’s equity and bond markets. Pac Basin Financ J 20(5):857–880
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Yalaman, A., Saleem, S.A.A. (2017). Forecasting Emerging Market Volatility in Crisis Period: Comparing Traditional GARCH with High-Frequency Based Models. In: Hacioğlu, Ü., Dinçer, H. (eds) Global Financial Crisis and Its Ramifications on Capital Markets. Contributions to Economics. Springer, Cham. https://doi.org/10.1007/978-3-319-47021-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-47021-4_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47020-7
Online ISBN: 978-3-319-47021-4
eBook Packages: Economics and FinanceEconomics and Finance (R0)