Skip to main content

Water and Methane in Shale Rocks: Flow Pattern Effects on Fluid Transport and Pore Structure

  • Chapter
  • First Online:
Nanoscale Fluid Transport

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In the last decade, because of the shale gas revolution in the USA the fluid flow in shale nanopores have attracted great attention of scientists worldwide. In shale formation water and natural gas can co-exist within the narrow pores, leading to the possibility of two-phase flow. In this work, I designed the molecular simulation system, that include water and methane confined in slit-shape muscovite nanopore, to investigate the effect of the two-phase flow patterns on the fluids transport and on the pore structure. The results indicate that when the driving force, i.e., the pressure drop, increases above a pore-size dependent threshold the two-phase flow pattern is altered. As a result, the velocity of methane with respect to that of water changes. My results also illustrate the importance of the capillary force, due to the formation of water bridges across the clay pores, not only on the fluid flow, but also on the pore structure, in particular its width. When the water bridges are broken, perhaps because of fast fluid flow, the capillary force vanishes leading to significant pore expansion. Because muscovite is a model for illite, a clay mineral often found in shale rocks, these results advance our understanding regarding the mechanism of water and gas transport in tight shale gas formations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hughes, J. D. (2013). A reality check on the shale revolution. Nature, 494(7437), 307–308.

    Article  CAS  Google Scholar 

  2. Cipolla, C. L., Lolon, E., & Mayerhofer, M. J. (2009). Reservoir modeling and production evaluation in shale-gas reservoirs. In International Petroleum Technology Conference.

    Google Scholar 

  3. Javadpour, F., Fisher, D., & Unsworth, M. (2007). Nanoscale gas flow in shale gas sediments. Journal of Canadian Petroleum Technology, 46(10).

    Google Scholar 

  4. Tanikawa, W., & Shimamoto, T. (2009). Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks. International Journal of Rock Mechanics and Mining Sciences, 46(2), 229–238.

    Article  Google Scholar 

  5. Ahmadlouydarab, M., Liu, Z.-S., & Feng, J. J. (2011). Interfacial flows in corrugated microchannels: Flow regimes, transitions and hysteresis. International Journal of Multiphase Flow, 37(10), 1266–1276.

    Article  CAS  Google Scholar 

  6. Ahmadlouydarab, M., Liu, Z.-S., & Feng, J. J. (2012). Relative permeability for two-phase flow through corrugated tubes as model porous media. International Journal of Multiphase Flow, 47, 85–93.

    Article  CAS  Google Scholar 

  7. Niessner, J., Berg, S., & Hassanizadeh, S. M. (2011). Comparison of two-phase Darcy’s law with a thermodynamically consistent approach. Transport in Porous Media, 88(1), 133–148.

    Article  CAS  Google Scholar 

  8. Ziarani, A. S., & Aguilera, R. (2011). Knudsen’s permeability correction for tight porous media. Transport in Porous Media, 91(1), 239–260.

    Article  Google Scholar 

  9. Yethiraj, A., & Striolo, A. (2013). Fracking: What can physical chemistry offer? The Journal of Physical Chemistry Letters, 4(4), 687–690.

    Article  CAS  Google Scholar 

  10. Wu, Q. H., et al. (2014). Optic imaging of two-phase-flow behavior in 1D nanoscale channels. SPE Journal, 19(5), 793–802.

    Article  Google Scholar 

  11. Silin, D., & Kneafsey, T. J. (2011). Gas shale: From nanometer-scale observations to well modelling. Canadian Society for Unconventional Gas CSUG/SPE 149489.

    Google Scholar 

  12. Muskat, M., & Meres, M. W. (1936). The flow of heterogeneous fluids through porous media. Journal of Applied Physics, 7(9), 346–363.

    Google Scholar 

  13. Shao, N., Gavriilidis, A., & Angeli, P. (2009). Flow regimes for adiabatic gas–liquid flow in microchannels. Chemical Engineering Science, 64(11), 2749–2761.

    Article  CAS  Google Scholar 

  14. Indraratna, B., & Ranjith, P. (2001). Laboratory measurement of two-phase flow parameters in rock joints based on high pressure triaxial testing. Journal of Geotechnical and Geoenvironmental Engineering, 127(6), 530–542.

    Article  Google Scholar 

  15. Ranjith, P. G., Choi, S. K., & Fourar, M. (2006). Characterization of two-phase flow in a single rock joint. International journal of rock mechanics and mining sciences, 43(2), 216–223.

    Article  Google Scholar 

  16. Wu, Q., et al. (2013). Optic imaging of single and two-phase pressure-driven flows in nano-scale channels. Lab on a Chip, 13(6), 1165–1171.

    Article  CAS  Google Scholar 

  17. Wang, J. W., Kalinichev, A. G., Kirkpatrick, R. J., & Cygan, R. T. (2005). Structure, energetics, and dynamics of water adsorbed on the muscovite (001) surface: A molecular dynamics simulation. The Journal of Physical Chemistry B, 109(33), 15893–15905.

    Article  CAS  Google Scholar 

  18. Teich-McGoldrick, S. L., Greathouse, J. A., & Cygan, R. T. (2012). Molecular dynamics simulations of structural and mechanical properties of muscovite: Pressure and temperature effects. Journal of Physical Chemistry C, 116(28), 15099–15107.

    Article  CAS  Google Scholar 

  19. Teich-McGoldrick, S. L., Greathouse, J. A., & Cygan, R. T. (2012). Molecular dynamics simulations of structural and mechanical properties of muscovite: Pressure and temperature effects. The Journal of Physical Chemistry C, 116(28), 15099–15107.

    Article  CAS  Google Scholar 

  20. White, W. M. (2013). Geochemistry. Oxford, UK: Wiley.

    Google Scholar 

  21. Pevear, D. R. (1999). Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3440–3446.

    Article  CAS  Google Scholar 

  22. Tian, Y., & Ayers, W. B. (2010). Barnett shale (Mississippian), Fort Worth Basin, Texas: Regional variations in gas and oil production and reservoir properties. In Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers.

    Google Scholar 

  23. Blatt, H., Tracy, R., & Owens, B. (1996). Petrology: Igneous, sedimentary and metamorphic (Freeman).

    Google Scholar 

  24. Nara, Y., Meredith, P. G., Yoneda, T., & Kaneko, K. (2011). Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure. Tectonophysics, 503(1–2), 52–59.

    Article  Google Scholar 

  25. Tanikawa, W., & Shimamoto, T. (2009). Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks (Vol. 46, p. 229). International Journal of Rock Mechanics and Mining Sciences, 46(8), 1394–1395.

    Article  Google Scholar 

  26. Docherty, S. Y., Nicholls, W. D., Borg, M. K., Lockerby, D. A., & Reese, J. M. (2014). Boundary conditions for molecular dynamics simulations of water transport through nanotubes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(1), 186–195.

    CAS  Google Scholar 

  27. Joseph, S., & Aluru, N. R. (2008). Why are carbon nanotubes fast transporters of water? Nano Letters, 8(2), 452–458.

    Article  CAS  Google Scholar 

  28. Koplik, J., Banavar, J. R., & Willemsen, J. F. (1988). Molecular dynamics of Poiseuille flow and moving contact lines. Physical Review Letters, 60(13), 1282–1285.

    Article  Google Scholar 

  29. Wang, L., Dumont, R. S., & Dickson, J. M. (2013). Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes. The Journal of Chemical Physics, 138(12), 124701.

    Article  Google Scholar 

  30. Kannam, S. K., Todd, B. D., Hansen, J. S., & Daivis, P. J. (2011). Slip flow in graphene nanochannels. Journal of chemical physics, 135(14), 144701.

    Article  Google Scholar 

  31. Thomas, J. A., McGaughey, A. J. H., & Kuter-Arnebeck, O. (2010). Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation. International Journal of Thermal Sciences, 49(2), 281–289.

    Article  CAS  Google Scholar 

  32. Gong, X. J., et al. (2008). Enhancement of water permeation across a nanochannel by the structure outside the channel. Physical Review Letters, 101(25), 257801.

    Article  Google Scholar 

  33. Ho, T. A., Papavassiliou, D. V., Lee, L. L., & Striolo, A. (2011). Liquid water can slip on a hydrophilic surface. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16170–16175.

    Article  CAS  Google Scholar 

  34. Lauga, E., Brenner, M., & Stone, H. (2007). Handbook of experimental fluid dynamics. New York: Springer.

    Google Scholar 

  35. Cygan, R. T., Liang, J. J., & Kalinichev, A. G. (2004). Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. The Journal of Physical Chemistry B, 108(4), 1255–1266.

    Article  CAS  Google Scholar 

  36. Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269–6271.

    Article  CAS  Google Scholar 

  37. Martin, M. G., & Siepmann, J. I. (1998). Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. The Journal of Physical Chemistry B, 102(14), 2569–2577.

    Article  CAS  Google Scholar 

  38. Ho, T. A., Argyris, D., Cole, D. R., & Striolo, A. (2012). Aqueous NaCl and CsCl solutions confined in crystalline slit-shaped silica nanopores of varying degree of protonation. Langmuir, 28(2), 1256–1266.

    Article  CAS  Google Scholar 

  39. Rebrov, E. V. (2010). Two-phase flow regimes in microchannels. Theoretical Foundations of Chemical Engineering, 44(4), 355–367.

    Google Scholar 

  40. Tambach, T. J., Hensen, E. J. M., & Smit, B. (2004). Molecular simulations of swelling clay minerals. The Journal of Physical Chemistry B, 108(23), 7586–7596.

    Article  CAS  Google Scholar 

  41. Rao, Q., Xiang, Y., & Leng, Y. S. (2013). Molecular simulations on the structure and dynamics of water-methane fluids between Na-montmorillonite clay surfaces at elevated temperature and pressure. Journal of Physical Chemistry C, 117(27), 14061–14069.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Anh Ho .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ho, T.A. (2017). Water and Methane in Shale Rocks: Flow Pattern Effects on Fluid Transport and Pore Structure. In: Nanoscale Fluid Transport. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-47003-0_5

Download citation

Publish with us

Policies and ethics