Skip to main content

Anthropogenic Ocean Change: The Consummate Threat to Marine Mammal Welfare

  • Chapter
  • First Online:
Marine Mammal Welfare

Part of the book series: Animal Welfare ((AWNS,volume 17))

Abstract

Global warming is the consummate conservation and animal welfare challenge of our time. It defies traditional conservation management models and requires we broaden traditional cause and effect time horizons. Continually rising concentrations of CO2 and other greenhouse gases (GHGs) prolong retention of the sun’s energy before it escapes back into space—assuring that global temperatures must rise. Oceans have absorbed ~30% of anthropogenically emitted CO2 and over 90% of the heat trapped by the world’s enhanced greenhouse effect. Sea surface temperature and global ocean heat content have been rising accordingly. Along with rising temperatures, pH, oxygen saturation, salinity, and other aspects of ocean chemistry also are changing. Cumulative interactions among all of these symptoms of anthropogenic ocean change are and will continue to impact ocean biota. In this chapter, we summarize observed and projected anthropogenically driven ocean changes that have been and will continue to compromise marine mammal welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amstrup SC (2003) Chapter 27: Polar bear, Ursus maritimus. In: Feldhamer GA, Thompson BC, Chapman JA (eds) Wild mammals of North America: biology, management, and conservation. John Hopkins University Press, Baltimore, pp 587–610

    Google Scholar 

  • Amstrup SC, DeWeaver E, Douglas DC et al (2010) Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468:955–958

    Article  CAS  PubMed  Google Scholar 

  • Bopp L, Resplandy L, Orr JC et al (2013) Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–6245

    Article  Google Scholar 

  • Cairns DK, Gaston AJ, Huettmann F (2008) Endothermy, ectothermy and the global structure of marine vertebrate communities. Mar Ecol Prog Ser 356:239–250

    Article  Google Scholar 

  • Crawford JA, Quakenbush LT, Citta JJ (2015) A comparison of ringed and bearded seal diet, condition and productivity between historical (1975–1984) and recent (2003–2012) periods in the Alaskan Bering and Chukchi seas. Prog Oceanogr 136:133–150

    Article  Google Scholar 

  • Deutsch C, Brix H, Ito T, Frenzel H, Thompson L (2011) Climate-forced variability of ocean hypoxia. Science 333:336–339. doi:10.1126/science.1202422

  • Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950–2000. Science 336:455–458

    Article  CAS  PubMed  Google Scholar 

  • Gleckler PJ, Durack PJ, Stouffer RJ, Johnson GC, Forest CE (2016) Industrial-era global ocean heat uptake doubles in recent decades. Nat Clim Chang 6:394–398

    Article  Google Scholar 

  • Hansen J, Sato M (2004) Greenhouse gas growth rates. Proc Natl Acad Sci U S A 101(46):16109–16114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazen EL, Craig JK, Good CP, Crowder LB (2009) Vertical distribution of fish biomass in hypoxic waters on the Gulf of Mexico shelf. Mar Ecol Prog Ser 375:195–207

    Article  Google Scholar 

  • Hazen EL, Jorgensen S, Rykaczewski RR et al (2013) Predicted habitat shifts of Pacific top predators in a changing climate. Nat Clim Chang 3:234–238

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686

    Article  Google Scholar 

  • Hoegh-Guldberg O, Cai R, Poloczanska ES et al (2014) The Ocean. In: Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, pp 1655–1731

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Jacobs SS, Giulivi CF (2010) Large multidecadal salinity trends near the Pacific-Antarctic continental margin. J Clim 23(17):4508–4524

    Article  Google Scholar 

  • Jacobson MZ (2005) Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air-ocean exchange and ocean equilibrium chemistry. J Geophys Res 110:D07302

    Google Scholar 

  • King A, Karoly D, Black M et al (2016) Great barrier reef bleaching would be almost impossible without climate change. https://theconversation.com/great-barrier-reef-bleaching-would-be-almost-impossible-without-climate-change-58408. Accessed 7 April 2017

  • Lutgens FK, Tarbuck EJ (2004) The atmosphere. Pearson Prentice Hall, Upper Saddle River, NJ, 508 pp

    Google Scholar 

  • Mathesius S, Hofmann M, Caldeira K, Shellnhuber HJ (2015) Long-term response of oceans to CO2 removal from the atmosphere. Nat Clim Chang 5:1107–1114

    Article  CAS  Google Scholar 

  • McIntyre T, Ansorge IJ, Bornemann H et al (2011) Elephant seal dive behaviour is influenced by ocean temperature: implications for climate change impacts on an ocean predator. Mar Ecol Prog Ser 441:257–272

    Article  Google Scholar 

  • Moore SE, Huntington HP (2009) Arctic marine mammals and climate change: Impacts and resilience. Ecological Applications, 18(2) Supplement, 2008, pp. S157–S165

    Google Scholar 

  • NOAA (National Oceanic and Atmospheric Administration) (2015) Global analysis - November 2015. http://wwwncdcnoaagov/sotc/global/201511. Accessed 7 April 2017

  • Olafsson J, Olafsdottir SR, Benoit-Cattin A, Danielsen M, Arnarson TS, Takahashi T (2009) Rate of Iceland Sea acidification from time series measurements. Biogeosciences 6;2661–2668. www.biogeosciences.net/6/2661/2009/

  • Oosthoek S (2012) Invasion of the bowhead snatchers. New Sci 213(2858):37–39

    Article  Google Scholar 

  • Orr JC et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681–686

    Article  CAS  PubMed  Google Scholar 

  • Peacock E, Taylor MK, Laake J, Stirling I (2013) Population ecology of polar bears in Davis Strait, Canada and Greenland. J Wildl Manage 77(3):463–476

    Article  Google Scholar 

  • Péron C, Weimerskirch H, Bost CA (2012) Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc Biol Sci 279(1738):2515–2523

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierrehumbert RT (2011) Infrared radiation and planetary temperature. Phys Today 64(1):33–38

    Article  Google Scholar 

  • Pörtner HO, Karl DM, Boyd PW et al (2014) Ocean systems. In: Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, pp 411–484

    Google Scholar 

  • Rahmstorf S, Box JE, Feulner G et al (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat Clim Chang 5:475–480

    Article  Google Scholar 

  • Regehr EV, Lunn NJ, Amstrup SC, Stirling I (2007) Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay. J Wildl Manag 71(8):2673–2683

    Article  Google Scholar 

  • Ridgwell A, Schmidt DN (2010) Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nat Geosci 3:196–200

    Article  CAS  Google Scholar 

  • Riser SC, Freeland HJ, Roemmich D et al (2016) Nat Clim Chang 6:145–153

    Article  Google Scholar 

  • Rockström J et al (2009) A safe operating space for humanity. Nature 461:472–475

    Article  PubMed  Google Scholar 

  • Rode KD, Amstrup SC, Regehr EV (2010) Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol Appl 20:768–782

    Article  PubMed  Google Scholar 

  • Rode KD, Robbins CT, Nelson L, Amstrup SC (2015) Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Front Ecol Eviron 13(3):138–145

    Article  Google Scholar 

  • Steinacher M, Joos F, Stocker TF (2013) Allowable carbon emissions lowered by multiple climate targets. Nature 499:197–201

    Article  CAS  PubMed  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498, doi:10.1175/BAMS-D-11-00094.1

  • Vélez-Belchí P, Hernández-Guerra A, Fraile-Nuez E, Benítez-Barrios V (2010) Changes in temperature and salinity tendencies of the upper subtropical North Atlantic ocean at 24.5°N. J Phy Oceanogr 40(11):2546–2555

    Article  Google Scholar 

  • Wayne GP (2013) The beginners guide to representative concentration pathways. https://skepticalscience.com/docs/RCP_Guide.pdf. Accessed 7 April 2017

  • Wijffels S, Roemmich D, Monselesan D et al (2016) Ocean temperatures chronicle the ongoing warming of earth. Nat Clim Chang 6:116–118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Amstrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this chapter

Cite this chapter

Amstrup, S.C., Lehner, F. (2017). Anthropogenic Ocean Change: The Consummate Threat to Marine Mammal Welfare. In: Butterworth, A. (eds) Marine Mammal Welfare. Animal Welfare, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-46994-2_2

Download citation

Publish with us

Policies and ethics