Skip to main content

Impact of Climate Change and Loss of Habitat on Sirenians

  • Chapter
  • First Online:
Marine Mammal Welfare

Part of the book series: Animal Welfare ((AWNS,volume 17))

Abstract

Although the impacts of climate change on the welfare of individual manatees and dugongs are still uncertain, the effects are likely to be through indirect interactions between meteorological and biotic factors and the human responses to climate change. We divided the potential impacts into (1) those that will potentially affect sirenians directly including temperature increases, sea-level rise, increased intensity of extreme weather events and changes in rainfall patterns and (2) indirect impacts that are likely to cause harm through habitat loss and change and the increase in the likelihood of harmful algal blooms and disease outbreaks. The habitat modification accompanying sea-level rise is likely to decrease the welfare of sirenians including increased mortality. Many species of tropical seagrasses live close to their thermal limits and will have to up-regulate their stress-response systems to tolerate the sublethal temperature increases caused by climate change. The capacity of seagrass species to evoke such responses is uncertain, as are the effects of elevated carbon dioxide on such acclimation responses. The increase in the intensity of extreme weather events associated with climate change is likely to decrease the welfare of sirenians through increased mortality from strandings, as well as habitat loss and change. These effects are likely to increase the exposure of sirenians to disease and their vulnerability to predators, including human hunters. Climate-related hazards will also exacerbate other stressors, especially for people living in poverty. Thus the risks to sirenians from climate change are likely to be greatest for small populations of dugongs and manatees occurring in low-income countries. The African manatee will be particularly vulnerable because of the high levels of human poverty throughout most of its range resulting in competition for resources, including protein from manatee meat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan JD, Abell R, Hogan Z et al (2005) Overfishing of inland waters. Bioscience 55:1041–1051

    Article  Google Scholar 

  • Allen S, Marsh H, Hodgson A (2004) Occurrence and conservation of the dugong Sirenia: Dugongidae in new South Wales. Proc Linnean Soc NSW 125:211–216

    Google Scholar 

  • Allison EH, Perry AL, Badjec MC et al (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish 10:173–196. doi:10.1111/j.1467-2979.2008.00310.x/full

    Article  Google Scholar 

  • Arora VK, Boer GJ (2001) Effects of simulated climate change on the hydrology of major river basins. J Geophys Res 106(D4):3335–3348

    Article  Google Scholar 

  • Arraut EM, Marmontel M (2016) Amazonian manatee threatened with extinction by massive dam-building plan in the Amazon. Science. eLetter: http://science.sciencemag.org/content/351/6269/128.e-letters. Accessed 6 11 16

  • Arraut EM, Marmontel M, Mantovani JE et al (2010) The lesser of two evils: seasonal migrations of Amazonian manatees in the western Amazon. J Zool 280:247–256. doi:10.1111/j.1469-7998.2009.00655.x

    Article  Google Scholar 

  • Atta-Mills J, Alder J, Sumaila UR (2004) The decline of a regional fishing nation: the case of Ghana and West Africa. Nat Res Forum 28:13–21

    Article  Google Scholar 

  • Barcellos C, Monteiro AMV, Corvalán C, Gurgel C, Gurgel HC, Carvalho MS, Artaxo P, Hacon S, Ragoni V (2009) Mudanças climáticas e ambientais e as doenças infecciosas: cenários e incertezas para o Brasil. Epidemio Serv Saúde (Brasília) 18(3): jul-set 2009

    Google Scholar 

  • Barlas ME, Deutsch CJ, de Wit M et al. (2011) Florida manatee cold-related unusual mortality event, January–April 2010. Final report to USFWS (grant 40181AG037). Available via Florida Fish and Wildlife Conservation Commission http://myfwc.com/media/1536184/2010_Manatee_Cold_related_UME_Final.pdf. Accessed 30 April 2016

  • Beckett J (1987) Torres Strait islanders: custom and colonialism. Cambridge University Press, Cambridge

    Google Scholar 

  • Bender MA, Knutson TR, Tuleya RE et al (2010) Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327:454–458

    Article  CAS  PubMed  Google Scholar 

  • Bloetscher F, Meeroff DH, Heimlich BN (2009) Improving the resilience of a municipal water utility against the likely impacts of climate change—a case study: city of pompano beach water utility. Florida Atlantic University, USA

    Google Scholar 

  • Bonde RK, Aguirre AA, Powell J (2004) Manatees as sentinels of marine ecosystem health: are they the 2000-pound canaries? EcoHealth 1:255–262

    Article  Google Scholar 

  • Bossart GD, Baden DG, Ewing R et al (1998) Brevetoxicosis in manatees (Trichechus manatus latirostris) from the 1996 epizootic: gross, histologic and immunohistochemical features. Toxicol Pathol 26:276–282

    Article  CAS  PubMed  Google Scholar 

  • Bossart GD, Meisner RA, Rommel SA et al (2003) Pathological features of the Florida manatee cold stress syndrome. Aquat Mamm 29:9–17

    Article  Google Scholar 

  • Brashares JS, Arcese P, Sam MK et al (2004) Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science 306:1180–1183

    Article  CAS  PubMed  Google Scholar 

  • Brazil (2016) Programa para Aceleração do Crescimento - PAC-II, Eixo Energia (Program for the Acceleration of Growth). In: Minist. Plan. http://www.pac.gov.br/infraestrutura-energetica. Accessed 30 April 2016

  • Butler JRA, Bohensky E, Skewes T, Maru Y et al (2015) Drivers of change in the Torres Strait region: status and trends. Report to National Environmental Research Program. Reef & Rainforest Research Centre Limited, Cairns, p 60

    Google Scholar 

  • Campbell SJ, McKenzie LJ, Kerville SP (2006) Photosynthetic response to seven tropical seagrasses to elevated seawater temperature. J Exp Mar Biol Ecol 330:455–468

    Article  CAS  Google Scholar 

  • Castello L, Macedo MN (2015) Large-scale degradation of Amazonian freshwater ecosystems. Glob Chang Biol 3:990–1007. doi:10.1111/gcb.13173

    Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM et al (2013) Sea level change. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1137–1216

    Google Scholar 

  • Christensen JH, Krishna Kumar K, Aldrian E et al (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1217–1308

    Google Scholar 

  • Collier CJ, Waycott M (2014) Temperature extremes reduce seagrass growth and induce mortality. Mar Pollut Bull 83:483–490

    Article  CAS  PubMed  Google Scholar 

  • Costa DP, Williams TM (1999) Marine mammal energetics. In: Reynolds JE, Rommel SA (eds) Biology of marine mammals. Smithsonian Institution Press, USA, pp 218–286

    Google Scholar 

  • Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Friel S, Grace N, Johnson A, Kett M, Lee M, Levy C, Maslin M, McCoy D, McGuire B, Montgomery H, Napier D, Pagel C, Patel J, Oliveira JAP, Redclift N, Rees H, Rogger D, Scotte J, Stephenson J, Twigg J, Wolff J, Patterson C (2009) Managing the health effects of climate change. Lancet 373:1693–1733

    Article  PubMed  Google Scholar 

  • Crouch J, McNiven IJ, David B et al (2007) Berberass: marine resource specialisation and environmental change in Torres Strait over the past 4000 years. Archaeol Ocean 42:49–64

    Article  Google Scholar 

  • Davidson K, Gowan RJ, Harrison PJ et al (2014) Anthropogenic nutrients and harmful algae in coastal waters. J Environ Manag 146:206–216

    Article  CAS  Google Scholar 

  • Delgado PM, Perea NS, Delgado JPM, Garcia CB, Malheiros AF, Davila CRG (2013) Detection of infection with toxoplasma gondii in manatees (Trichechus inunguis) of the Peruvian Amazon. Acta Biolgica Colombiana 18:211–216

    Google Scholar 

  • Delgado PM, Perea NS, Garcia CB, Davila CRG (2015) Detection of infection with Leptospira spp. in manatees (Trichechus inunguis) of the Peruvian Amazon. Lat Am J Aquat Mamm 10:58–61

    Article  Google Scholar 

  • Domning DP (1981) Sea cows and sea grasses. Paleobiology 7:417–420

    Article  Google Scholar 

  • Domning DP (1982) Commercial exploitation of manatees Trichechus in Brazil c. 1785–1973. Biol Conserv 22:101–126

    Article  Google Scholar 

  • Domning DP (2001) Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeogr Palaeoclimatol Palaeoecol 166:27–50

    Article  Google Scholar 

  • Doney SC (2006) Plankton in a warmer world. Nature 444:695–696

    Article  CAS  PubMed  Google Scholar 

  • Doney SC, Ruckelshaus M, Duffy JE et al (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–17

    Article  Google Scholar 

  • Duce SJ, Parnell KE, Smithers SG, McNamara KE (2010) A synthesis of climate change and coastal science to support adaptation in the communities of the Torres Strait. Synthesis report prepared for the Marine and Tropical Sciences Research Facility (MTSRF). Reef & Rainforest Research Centre Limited, Cairns, p 64

    Google Scholar 

  • Easterling DR, Evans JL, Groisman PY et al (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–421

    Article  Google Scholar 

  • Edwards HH (2013) Potential impacts of climate change on warmwater megafauna: the Florida manatee example (Trichechus manatus latirostris). Clim Chang 121(4):727–738. doi:10.1007/s10584-013-0921-2

    Article  Google Scholar 

  • Elsner R (1999) Living in water: solutions to physiological problems. In: Reynolds JE, Rommel SA (eds) Biology of marine mammals. Smithsonian Institution Press, USA, pp 73–117

    Google Scholar 

  • El Espectador (2016) Medio Ambiente 12 April 2016 Manatíes en ciénaga de Mahates, en riesgo por falta de alimento. http://www.elespectador.com/noticias/medio-ambiente/manaties-cienaga-de-mahates-riesgo-falta-de-alimento-video-626621. Accessed 6 11 16

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  CAS  PubMed  Google Scholar 

  • Errera RM, Yvon-Lewis S, Kessler JD et al (2014) Responses of the dinoflagellate Karenia Brevis to climate change: pCO2 and sea surface temperatures. Harmful Algae 37:110–116

    Article  CAS  Google Scholar 

  • Fearnside PM (2006) Dams in the Amazon: Belo Monte and Brazil’s hydroelectric development of the Xingu river basin. Environ Manag 38:16–27. doi:10.1007/s00267-005-0113-6

    Article  Google Scholar 

  • Fearnside PM (2014) Impacts of Brazil’s Madeira River dams: unlearned lessons for hydroelectric development in Amazonia. Environ Sci Pol 38:164–172. doi:10.1016/j.envsci.2013.11.004

    Article  Google Scholar 

  • Fearnside PM (2016a) Environmental and social impacts of hydroelectric dams in Brazilian Amazonia: implications for the aluminum industry. World Dev 77:48–65. doi:10.1016/j.worlddev.2015.08.015

    Article  Google Scholar 

  • Fearnside PM (2016b) Tropical dams: to build or not to build? Science 351(80):456–457. doi:10.1126/science.351.6272.456-b

    Article  CAS  PubMed  Google Scholar 

  • Ferreira-Ferreira J, Silva TSF, Streher AS et al (2014) Combining ALOS/PALSAR derived vegetation structure and inundation patterns to characterize major vegetation types in the Mamirauá sustainable development reserve, Central Amazon floodplain, Brazil. Wetl Ecol Manag 23:41–59. doi:10.1007/s11273-014-9359-1

    Article  Google Scholar 

  • Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fish 17:581–613

    Article  Google Scholar 

  • Florida Oceans and Coastal Council (2010) An update of the effects of climate change on Florida’s ocean and coastal resources December2010. Available at: http://seagrantnoaagov/Portals/0/Documents/what_we_do/climate/Florida%20Report%20on%20Climate%20Change%20and%20SLRpdf. Accessed 30 April 2016

  • Florida Department of Environmental Protection (2014) Water use trends in Florida. Available via https://www.dep.state.fl.us/water/waterpolicy/docs/factsheets/wrfss-water-use-trends.pdf. Accessed 30 April 2016

    Google Scholar 

  • Fourqurean JW, Rutten LM (2004) The impacts of hurricane Georges on the soft-bottom, back reef communities: site-and species-specific effects in South Florida seagrass beds. Bull Mar Sci 75:239–257

    Google Scholar 

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, red list criteria and population viability analyses. Biol Conserv 170:56–63. doi:10.1016/j.biocon.2013.12.036

    Article  Google Scholar 

  • Fuentes MMPB, Chambers LE, Chin A, Dann P, Dobbs K, Poloczanska E, Maison K, Turner M, Pressey RL, Marsh H (2014) Adaptive management of marine mega-fauna in a changing climate. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-014-9590

    Google Scholar 

  • Fuentes MMPB, Beatty B, Delean S, Grayson J, Lavender S, Logan M, Marsh H (2016) Spatial and temporal variation in the effects of climatic variables on dugong calf production. PLoS One, PONE-D-15-52097R1

  • Gallivan GJ, Best RC, Kanwisher JW (1983) Temperature regulation in the Amazonian manatee Trichechus inunguis. Physiol Zool 56:255–262

    Article  Google Scholar 

  • Gaye CB, Diaw M, Malou R (2013) Assessing the impacts of climate change on water resources of a west African trans-boundary river basin and its environmental consequences (Senegal River basin). Sci Cold Arid Reg 5:0140–0156

    Article  Google Scholar 

  • Geophysical Fluid Dynamics Laboratory/NOAA (2015) Global warming and hurricanes. http://www.gfdl.noaa.go.global-warming-and-hurricanes. Accessed 30 April 2016.

  • Gessner BD, Middaugh JP (1995) Paralytic shell fish poisoning in Alaska: a 20-year retrospective analysis. Am J Epidemiol 141:766–770

    Article  CAS  PubMed  Google Scholar 

  • Gilbert PM, Burkholder JM (2006) The complex relationships between increasing fertilization of the earth, coastal eutrophication and proliferation of harmful algal blooms. In: Granéli E, Turner J (eds) Ecology of harmful algae. Springer, New York, pp 341–354

    Chapter  Google Scholar 

  • Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479

    Article  CAS  PubMed  Google Scholar 

  • Greening H, Doering P, Corbett C (2006) Hurricane impacts on coastal ecosystems. Estuar Coasts 29:877–879

    Article  Google Scholar 

  • Guterres-Pazin MG, Marmontel M, Rosas FCW, Pazin VFV, Venticinque EM (2014) Feeding ecology of the Amazonian manatee (Trichechus inunguis) in the Mamirauá and Amanã sustainable development reserves. Braz Aqua Mammal 40:139–149. doi:10.1578/AM.40.2.2014.139

    Article  Google Scholar 

  • Haddon AC (1912) Reports of the Cambridge anthropological expedition to Torres Strait. The University Press, Cambridge

    Google Scholar 

  • Hallegraeff GM (2010) Ocean climate change, phytoplankton community response and harmful algal blooms: a formidable predictive challenge. J Phycol 46:220–235

    Article  CAS  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SK (2010) Biogeochemical implications of climate change for tropical rivers and floodplains. Hydrobiologia 657:19–35. doi: 10.1007/ S10750-009-0086-1

    Article  CAS  Google Scholar 

  • Heinsohn GE, Spain AV (1974) Effects of a tropical cyclone on littoral and sub littoral biotic communities and on a population of dugongs (Dugong dugon [Müller]). Biol Conserv 6:143–152

    Article  Google Scholar 

  • Heisler J, Gilbert P, Burkholder J et al (2008) Eutrophication and harmful algal blooms: scientific consensus. Harmful Algae 8:3–13

    Article  CAS  Google Scholar 

  • Horgan P, Booth D, Nichols C, Lanyon JM (2014) Insulative capacity of the integument of the dugong (Dugong dugon): thermal conductivity, conductance and resistance measured by in vitro heat flux. Mar Biol 161:1395–1407. doi:10.1007/s00227-014-2428-4

    Article  Google Scholar 

  • Irvine AB (1983) Manatee metabolism and its influence on distribution in Florida. Biol Conserv 25:315–334

    Article  Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J et al (2012) A classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetl Ecol Manag 20:461–475. doi:10.1007/s11273-012-9268-0

    Article  Google Scholar 

  • Johannes RE, Macfarlane JW (1991) Traditional fishing in the Torres Strait islands. CSIRO, Hobart

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Keith Diagne L (2015) Trichechus senegalensis. In: The IUCN Red List of Threatened Species 2015: e.T22104A81904980. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T22104A81904980.en. Accessed 15 April 2016

  • Killeen TJ, Solórzano LA (2008) Conservation strategies to mitigate impacts from climate change in Amazonia. Philos Trans R Soc B 363:1881–1888

    Article  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132. doi:10.1111/j.1365-2486.2012.02791.x

    Article  PubMed  Google Scholar 

  • Laist DW, Reynolds JE III (2005) Florida manatees, warm-water refuges, and the uncertain future. Coast Manag 33:279–295

    Article  Google Scholar 

  • Landsberg JH, Steidinger KA (1998) A historical review of Gymnodinium breve red tide implicated in mass mortalities of the manatee (Trichechus manatus latirostris) in Florida, USA. In: Reguera B, Blanco J, Fernandez ML, Wyatt T (eds) Proceedings of the 8th international conference on harmful algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 97–100

    Google Scholar 

  • Langerwisch F, Rost S, Gerten D, Poulter B, Rammig A, Cramer W (2013) Potential effects of climate change on inundation patterns in the Amazon Basin. Hydrol Earth Syst Sci 17:2247–2262

    Article  Google Scholar 

  • Langtimm CA, Beck CA (2006) Lower survival probabilities for adult Florida manatees in years with intense coastal storms. Ecol Appl 13:257–268

    Article  Google Scholar 

  • Lanyon JM, Newgrain K, Alli TSS (2006) Estimation of water turnover rate in captive dugongs (Dugong dugon). Aquat Mamm 32:103–108

    Article  Google Scholar 

  • Lau CL, Smythe LD, Craig SB, Weinstein P (2010) Climate change, flooding, urbanisation and leptospirosis: fuelling the fire? Trans R Soc Trop Med Hyg 104:631–638

    Article  PubMed  Google Scholar 

  • Lawler IR, Parra G, Noad M (2007) Vulnerability of marine mammals in the great barrier reef to climate change. In: Johnson JE, Marshall PA (eds) Climate change and the great barrier Reef, a vulnerability assessment. Australia, Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, pp 498–513

    Google Scholar 

  • Macreadie PI, Baird ME, Trevathan-Tackett SM, Larkum AWD, Ralph PJ (2014) Quantifying and modelling the carbon sequestration capacity of seagrass meadows – a critical assessment. Mar Pollut Bull 83:430–439

    Article  CAS  PubMed  Google Scholar 

  • Mallin MA, Corbett CA (2006) How hurricane attributes determine the extent of environmental effects: multiple hurricanes and different coastal systems. Estuar Coasts 29:1046–1061

    Article  Google Scholar 

  • Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703. doi:10.1029/2011GL047436

    Article  Google Scholar 

  • Marsh H (1989) Mass stranding of dugongs by a tropical cyclone. Mar Mamm Sci 5:75–84

    Article  Google Scholar 

  • Marsh H, Kwan D (2008) Temporal variability in the life history and reproductive biology of female dugongs in Torres Strait: the likely role of sea grass dieback. Cont Shelf Res 28:2152–2159

    Article  Google Scholar 

  • Marsh H, O'Shea TJ, Reynolds JE III (2011) Ecology and conservation of the Sirenia: dugongs and manatees. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Marsh H, Grayson J, Grech A et al (2015) A re-evaluation of the sustainability of an indigenous marine mammal harvest using several lines of evidence. Biol Conserv 192:324–330

    Article  Google Scholar 

  • Mathews PD, da Silva VMF, Rosas FCW, d'Affonseca Neto JA, Lazzarini SM, Ribeiro DC, Dubey JP, Vasconcellos SA, Gennari SM (2012) Occurrence of antibodies to Toxoplasma gondii and Lepstospira spp. in manatees (Trichechus inunguis) of the Brazilian Amazon. J Zoo Wildl Med 43:85–88

    Article  PubMed  Google Scholar 

  • Meager JJ, Limpus C (2014) Mortality of inshore marine mammals in eastern Australia is predicted by freshwater discharge and air temperature. PLoS One 9(4):e94849. doi:10.1371/journal.pone.0094849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore SK, Trainer VL, Mantua NJ et al (2008) Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ Health 7:S4. doi:10.1186/1476-069X-7-S2-S

    Article  PubMed  PubMed Central  Google Scholar 

  • Nietschmann B, Nietschmann J (1981) Good dugong, bad dugong: bad turtle, good turtle. Natural History Magazine 90, New York

    Google Scholar 

  • Omot N (2012) Food security in Papua New Guinea. AARES 56th Annual Conference – Fremantle, Western Australia, February 07–10, pp 17

    Google Scholar 

  • Owen HC, Flint M, Limpus CJ, Palmieri C, Mills PC (2013) Evidence of sirenian cold stress syndrome in dugongs Dugong dugon from Southeast Queensland, Australia. Dis Aquat Org 103:1–7. doi:10.3354/dao02568

    Article  PubMed  Google Scholar 

  • Parris A, Bromirski P, Burkett V et al. (2012) Global sea level rise scenarios for the United States National Climate Assessment. NOAA. Available via http://www.cpo.noaa.gov/sites/cpo/Reports/2012/NOAA_SLR_r3.pdf. Accessed 30 April 2016

  • Poloczanska ES, Babcock RC, Butler A et al (2007) Climate change and Australian marine life. Oceanogr Mar Biol Annu Rev 45:407–478

    Google Scholar 

  • Powell JA (1996) The distribution and biology of the west African manatee (Trichechus senegalensis, link 1795). United Nations Environmental Program, Regional Seas Programme, Ocean and Coastal Areas, Nairobi, Kenya

    Google Scholar 

  • Prospero JM, Lamb PJ (2003) African drought and dust transport to Caribbean: climate change implications. Science 302:1024–1027

    Article  CAS  PubMed  Google Scholar 

  • Rahmstorf S (2010) A new view on sea level rise. Nat Rep Clim Chan 1004:44–45. doi:10.1038/climate.2010.2

    Article  Google Scholar 

  • Ralph PJ (1998) Photosynthetic response of laboratory-cultured Halophila ovalis to thermal stress. Mar Ecol Prog Ser 171:123–130

    Article  Google Scholar 

  • Rowcliffe JM, Milner-Gulland EJ, Cowlishaw G (2005) Do bushmeat consumers have other fish to fry? TREE 20:274–276

    PubMed  Google Scholar 

  • Runge MC, Sanders-Reed CA, Langtimm CA et al (2007) A quantitative threats analysis for the Florida manatee (Trichechus manatus latirostris). Available at U.S. Geological Survey https://pubs.er.usgs.gov/publication/ofr20071086. Accessed 30 April 2016

  • Scavia D, Field JC, Boesch DF et al (2002) Climate change impacts on U.S. coastal and marine ecosystems. Estuaries 25:149–164

    Article  Google Scholar 

  • Sellner KG, Doucette GJ, Kirkpatrick GJ (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol 30:383–406

    Article  CAS  PubMed  Google Scholar 

  • SFWMD (Southwest Florida Water Management District) (2001) Hydrology and water quality of select springs in the Southwest Florida Water Management District. Available at Friends of mineral springs http://friendsofwarmmineralsprings.org/wp-content/uploads/2013/09/Hydrology-Water-quality-SW-Fla.pdf. Accessed 30 April 2016

    Google Scholar 

  • Sheppard J, Preen AR, Marsh H, Lawler IR, Whiting S, Jones RE (2006) Movement heterogeneity of dugongs, Dugong dugon Müller over large spatial scales. J Exp Mar Biol Ecol 334:64–83

    Article  Google Scholar 

  • Short FT, Neckles HA (1999) The effects of global climate change on seagrasses. Aquat Bot 63:169–196

    Article  Google Scholar 

  • Sorribas MV, Paiva RCD, Melack JM et al (2016) Projections of climate change effects on discharge and inundation in the Amazon basin. Clim Chang. doi:10.1007/s10584-016-1640-2

    Google Scholar 

  • Steward JS, Virnstein RW, Lasi MA et al (2006) The impacts of the 2004 hurricanes on the hydrology, water quality and seagrass in the Central Indian River lagoon, Florida. Estuar Coasts 29:954–965

    Article  Google Scholar 

  • Stoeckl N, Larson TM, Hicks C, Pascoe S, Marsh H (in press) Socioeconomic impacts of changes to marine fisheries and aquaculture that are brought about through climate change. In: Phillips B (ed) The impact of climate change on marine fisheries and aquaculture and their adaptations. Wiley, USA

    Google Scholar 

  • Thornback J, Jenkins M (1982) The IUCN mammal red data book part 1: threatened mammalian taxa of the Americas and the Australasian zoogeographic region (excluding Cetacea). The International Union for Conservation of Nature (IUCN) and United Nations Environment Program (UNEP), Gland, Switzerland

    Google Scholar 

  • UN Atlas (2010) UN Atlas: 44 percent of us live in coastal areas https://coastalchallenges.com/2010/01/31/un-atlas-60-of-us-live-in-the-coastal-areas/. Accessed April 30 2016

    Google Scholar 

  • Wade M, Mignot J, Lazar A, Gaye AT, Carré M (2015) On the spatial coherence of rainfall over the Saloum delta (Senegal) from seasonal to decadal time scales. Front Earth Sci 3:30. doi:10.3389/feart.2015.00030

    Article  Google Scholar 

  • Walsh JJ, Steidinger KA (2001) Saharan dust and Florida red tides: the cyanophyte connection. J Geophy Res Oceans 106:11,597–11,612

    Article  CAS  Google Scholar 

  • Walsh JE, Phillips AS, Portis DH, Chapman WL (2001) Extreme cold outbreaks in the United States and Europe, 1948–99. J Clim 14:2642–2658

    Article  Google Scholar 

  • Walsh CJ, Butawan M, Yordy J et al (2015) Sublethal red tide toxin exposure in free-ranging manatees (Trichechus manatus) affects the immune system through reduced lymphocyte proliferation response, inflammation, and oxidative stress. Aquat Toxicol 161:73–84

    Article  CAS  PubMed  Google Scholar 

  • Watson RT, Zinyowera MC, Moss RH (1996) Climate change 1995: impacts, adaptations, and mitigation of climate change. Scientific-technical analysis. Contribution of working group II to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci U S A 106:12377–12381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA et al (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    Article  CAS  PubMed  Google Scholar 

  • Wells ML, Trainer VL, Smayda TJ et al (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Winemiller KO, McIntyre PB, Castello L et al (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351(80):128–129. doi:10.1126/science.aac7082

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helene Marsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Marsh, H., Arraut, E.M., Diagne, L.K., Edwards, H., Marmontel, M. (2017). Impact of Climate Change and Loss of Habitat on Sirenians. In: Butterworth, A. (eds) Marine Mammal Welfare. Animal Welfare, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-46994-2_19

Download citation

Publish with us

Policies and ethics