Skip to main content

Cell Segmentation Proposal Network for Microscopy Image Analysis

  • Conference paper
  • First Online:
Deep Learning and Data Labeling for Medical Applications (DLMIA 2016, LABELS 2016)

Abstract

Accurate cell segmentation is vital for the development of reliable microscopy image analysis methods. It is a very challenging problem due to low contrast, weak boundaries, and conjoined and overlapping cells; producing many ambiguous regions, which lower the performance of automated segmentation methods. Cell proposals provide an efficient way of exploiting both spatial and temporal context, which can be very helpful in many of these ambiguous regions. However, most proposal based microscopy image analysis methods rely on fairly simple proposal generation stage, limiting their performance. In this paper, we propose a convolutional neural network based method which provides cell segmentation proposals, which can be used for cell detection, segmentation and tracking. We evaluate our method on datasets from histology, fluorescence and phase contrast microscopy and show that it outperforms state of the art cell detection and segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.robots.ox.ac.uk/~vgg/software/cell_detection/.

  2. 2.

    http://codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/KTH-SE.html.

References

  1. Akram, S.U., Kannala, J., Eklund, L., Heikkilä, J.: Cell proposal network for microscopy image analysis. In: ICIP (2016)

    Google Scholar 

  2. Akram, S.U., Kannala, J., Eklund, L., Heikkilä, J.: Joint cell segmentation and tracking using cell proposals. In: ISBI (2016)

    Google Scholar 

  3. Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Learning to detect cells using non-overlapping extremal regions. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 348–356. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Bise, R., Sato, Y.: Cell detection from redundant candidate regions under nonoverlapping constraints. IEEE Trans. Med. Imaging 34, 1417–1427 (2015)

    Article  Google Scholar 

  5. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: CVPR (2016)

    Google Scholar 

  6. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: CVPR (2016)

    Google Scholar 

  7. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  8. Kainz, P., Urschler, M., Schulter, S., Wohlhart, P., et al.: You should use regression to detect cells. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 276–283. Springer, New York (2015)

    Chapter  Google Scholar 

  9. Magnusson, K.E.G., Jalden, J.: A batch algorithm using iterative application of the viterbi algorithm to track cells and construct cell lineages. In: ISBI (2012)

    Google Scholar 

  10. Maška, M., Ulman, V., Svoboda, D., Matula, P., et al.: A benchmark for comparison of cell tracking algorithms. Bioinformatics 30, 1609–1617 (2014)

    Article  Google Scholar 

  11. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22, 761–767 (2004)

    Article  Google Scholar 

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: MICCAI (2015)

    Google Scholar 

  14. Schiegg, M., Hanslovsky, P., Haubold, C., Koethe, U., et al.: Graphical model for joint segmentation and tracking of multiple dividing cells. Bioinformatics (2015)

    Google Scholar 

  15. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Ullah Akram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Akram, S.U., Kannala, J., Eklund, L., Heikkilä, J. (2016). Cell Segmentation Proposal Network for Microscopy Image Analysis. In: Carneiro, G., et al. Deep Learning and Data Labeling for Medical Applications. DLMIA LABELS 2016 2016. Lecture Notes in Computer Science(), vol 10008. Springer, Cham. https://doi.org/10.1007/978-3-319-46976-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46976-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46975-1

  • Online ISBN: 978-3-319-46976-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics