Skip to main content

Understanding the Mechanisms of Deep Transfer Learning for Medical Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10008))

Abstract

The ability to automatically learn task specific feature representations has led to a huge success of deep learning methods. When large training data is scarce, such as in medical imaging problems, transfer learning has been very effective. In this paper, we systematically investigate the process of transferring a Convolutional Neural Network, trained on ImageNet images to perform image classification, to kidney detection problem in ultrasound images. We study how the detection performance depends on the extent of transfer. We show that a transferred and tuned CNN can outperform a state-of-the-art feature engineered pipeline and a hybridization of these two techniques achieves 20 % higher performance. We also investigate how the evolution of intermediate response images from our network. Finally, we compare these responses to state-of-the-art image processing filters in order to gain greater insight into how transfer learning is able to effectively manage widely varying imaging regimes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ardon, R., Cuingnet, R., Bacchuwar, K., Auvray, V.: Fast kidney detection and segmentation with learned kernel convolution and model deformation in 3D ultrasound images. In: Proceedings of ISBI, pp. 268–271 (2015)

    Google Scholar 

  2. Becker, C., Rigamonti, R., Lepetit, V., Fua, P.: Supervised feature learning for curvilinear structure segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 526–533. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Carneiro, G., Georgescu, B., Good, S., Comaniciu, D.: Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Trans. Med. Imaging 27(9), 1342–1355 (2008)

    Article  Google Scholar 

  4. Carneiro, G., Nascimento, J., Bradley, A.P.: Unregistered multiview mammogramanalysis with pre-trained deep learning models. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 652–660. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  5. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proceedings of ICML, pp. 161–168 (2006)

    Google Scholar 

  6. Chen, H., Ni, D., Qin, J., Li, S., Yang, X., Wang, T., Heng, P.A.: Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J. Biomed. Health Inform. 19(5), 1627–1636 (2015)

    Article  Google Scholar 

  7. Cho, J., Lee, K., Shin, E., Choy, G., Do, S.: How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? In: ICLR (2016)

    Google Scholar 

  8. Emamian, S.A., Nielsen, M.B., Pedersen, J.F., Ytte, L.: Kidney dimensions at sonography: correlation with age, sex, and habitus in 665 adult volunteers. Am. J. Roentgenol. 160(1), 83–86 (1993)

    Article  Google Scholar 

  9. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation (2014)

    Google Scholar 

  11. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

  12. Keramidas, E.G., Iakovidis, D.K., Maroulis, D.E., Karkanis, S.A.: Efficient and effective ultrasound image analysis scheme for thyroid nodule detection. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 1052–1060. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Kop, A.M., Hegadi, R.: Kidney segmentation from ultrasound images using gradient vector force. IJCA 2, 104–109 (2010). Special Issue on RTIPPR

    Google Scholar 

  14. Kovesi, P.: Phase congruency detects corners and edges. In: Proceedings of the Australian Pattern Recognition Society Conference: DICTA, pp. 309–318 (2003)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems NIPS, pp. 1106–1114 (2012)

    Google Scholar 

  16. Martin-Fernandez, M., Alberola-Lopez, C.: An approach for contour detection of human kidneys from ultrasound images using Markov random fields and active contours. Med. Image Anal. 9(1), 1–23 (2005)

    Article  Google Scholar 

  17. Ravishankar, H., Annangi, P.: Automated kidney morphology measurements from ultrasound images using texture and edge analysis. In: SPIE Medical Imaging (2016)

    Google Scholar 

  18. Shie, C.K., Chuang, C.H., Chou, C.N., Wu, M.H., Chang, E.Y.: Transfer representation learning for medical image analysis. In: EMBC, pp. 711–714 (2015)

    Google Scholar 

  19. Shin, H., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D.J., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  20. Sohail, A.S.M., Rahman, M.M., Bhattacharya, P., Krishnamurthy, S., Mudur, S.P.: Retrieval and classification of ultrasound images of ovarian cysts combining texture features and histogram moments. In: Proceedings of ISBI, pp. 288–291, April 2010

    Google Scholar 

  21. Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    Article  Google Scholar 

  22. Xie, J., Jiang, Y., Tsui, H.T.: Segmentation of kidney from ultrasound images based on texture and shape priors. IEEE Trans. Med. Imaging 24(1), 45–57 (2005)

    Article  Google Scholar 

  23. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Proceedings Advances in Neural Information Processing Systems NIPS, pp. 3320–3328 (2014)

    Google Scholar 

  24. Zheng, Y., Liu, D., Georgescu, B., Nguyen, H., Comaniciu, D.: 3D deep learning for efficient and robust landmark detection in volumetric data. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 565–572. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24553-9_69

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad Sudhakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ravishankar, H. et al. (2016). Understanding the Mechanisms of Deep Transfer Learning for Medical Images. In: Carneiro, G., et al. Deep Learning and Data Labeling for Medical Applications. DLMIA LABELS 2016 2016. Lecture Notes in Computer Science(), vol 10008. Springer, Cham. https://doi.org/10.1007/978-3-319-46976-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46976-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46975-1

  • Online ISBN: 978-3-319-46976-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics