Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 375 Accesses

Abstract

This chapter presents a detailed and comprehensive review of the literature relating to the proposed SOFC liquid desiccant tri-generation system. The review is split into five key topics:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Salam, A. H., G. Ge and C. J. Simonson. 2013. Performance analysis of a membrane liquid desiccant air-conditioning system. Energy and Buildings 62: 559–569.

    Google Scholar 

  • Al-Sulaiman, F.A., I. Dincer, and F. Hamdullahpur. 2010. Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle. International Journal of Hydrogen Energy 35(10): 5104–5113.

    Article  Google Scholar 

  • Al-Sulaiman, F.A., F. Hamdullahpur, and I. Dincer. 2011. Trigeneration: A comprehensive review based on prime movers. International Journal of Energy Research 35(3): 233–258.

    Article  Google Scholar 

  • ASHRAE. 2009. 2009 ASHRAE Handbook—Fundamentals (I-P Edition). Atlanta, USA, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

    Google Scholar 

  • Badami, M., and A. Portoraro. 2009. Performance analysis of an innovative small-scale trigeneration plant with liquid desiccant cooling system. Energy and Buildings 41(11): 1195–1204.

    Article  Google Scholar 

  • Badami, M., A. Portoraro, and G. Ruscica. 2012. Analysis of trigeneration plants: Engine with liquid desiccant cooling and micro gas turbine with absorption chiller. International Journal of Energy Research 36(5): 579–589.

    Article  Google Scholar 

  • Beausoleil-Morrison, I., and K. Lombardi. 2009. The calibration of a model for simulating the thermal and electrical performance of a 2.8 kWAC solid-oxide fuel cell micro-cogeneration device. Journal of Power Sources 186(1): 67–79.

    Article  Google Scholar 

  • Beaussoleil-Morrison, I. 2008. An experimental and simulation-based investigation of the performance of small scale fuel cell and combustion-based cogeneration devices serving residential buildings. Annex 42 of the International Energy Agency’s Energy Conservation in Buildings and Community Systems Programme.

    Google Scholar 

  • Bergero, S., and A. Chiari. 2010. Performance analysis of a liquid desiccant and membrane contactor hybrid air-conditioning system. Energy and Buildings 42(11): 1976–1986.

    Article  Google Scholar 

  • Bhatti, M. S., J. F. O’Brien, I. Reyzin, M. Grieve and S. M. Kelly. 2010. Solid oxide fuel cell assisted air conditioning system. USA.

    Google Scholar 

  • Bianchi, M., A. De Pascale, and P.R. Spina. 2012. Guidelines for residential micro-CHP systems design. Applied Energy 97: 673–685.

    Article  Google Scholar 

  • Blomen, L. J., M.J. Blomen, M.N. Mugerwa. 1993. Fuel Cell Systems. New York.

    Google Scholar 

  • Bonke, M. 2007. Novel liquid desiccant dehumidification system (DEHUMID). Co-operative Research Projects, COOP-CT-2005-016957

    Google Scholar 

  • Boyd, J. 2008. IEEE Spectrum: Home fuel cells to sell in Japan. Retrieved 27/04/2012, from http://spectrum.ieee.org/energy/renewables/home-fuel-cells-to-sell-in-japan.

  • Bradley, A. 2013. Technology shift in micro-CHP: Fuel cell outsells engines for the first time. News-releases Retrieved 03/02/2013, 2013, from http://www.prnewswire.com/news-releases/technology-shift-in-micro-chp-fuel-cell-outsells-engines-for-the-first-time-214928111.html.

  • Brouwer, J. 2010. On the role of fuel cells and hydrogen in a more sustainable and renewable energy future. Current Applied Physics 10(2, Suppl.): S9–S17.

    Google Scholar 

  • Buker, M.S., and S.B. Riffat. 2015. Recent developments in solar assisted liquid desiccant evaporative cooling technology—A review. Energy and Buildings 96: 95–108.

    Article  Google Scholar 

  • Chicco, G., and P. Mancarella. 2007. Trigeneration primary energy saving evaluation for energy planning and policy development. Energy Policy 35(12): 6132–6144.

    Article  Google Scholar 

  • Choudhury, A., H. Chandra, and A. Arora. 2013. Application of solid oxide fuel cell technology for power generation—A review. Renewable and Sustainable Energy Reviews 20: 430–442.

    Article  Google Scholar 

  • Conde, M. 2007. Liquid desiccant-based air-conditioning systems—LDACS. in 1st European Conference on Polygeneration, Tarragona, Spain.

    Google Scholar 

  • Dai, Y.J., R.Z. Wang, H.F. Zhang, and J.D. Yu. 2001. Use of liquid desiccant cooling to improve the performance of vapor compression air conditioning. Applied Thermal Engineering 21(12): 1185–1202.

    Article  Google Scholar 

  • Daou, K., R.Z. Wang, and Z.Z. Xia. 2006. Desiccant cooling air conditioning: A review. Renewable and Sustainable Energy Reviews 10(2): 55–77.

    Article  Google Scholar 

  • Darwish, M.A. 2007. Building air conditioning system using fuel cell: Case study for Kuwait. Applied Thermal Engineering 27(17–18): 2869–2876.

    Article  Google Scholar 

  • Das, R.S., P.K. Saha, and S. Jain. 2012. Investigations on solar energy driven liquid desiccant cooling systems for tropical climates. Melbourne: Australian Solar Energy Society. Australian Solar Council.

    Google Scholar 

  • Deng, J., R.Z. Wang, and G.Y. Han. 2011. A review of thermally activated cooling technologies for combined cooling, heating and power systems. Progress in Energy and Combustion Science 37(2): 172–203.

    Article  Google Scholar 

  • Duan, Z., Zhan, Changhong., Zhang, Xingxing., Mustafa, Mahmud., Zhao, Xudong., Alimohammadisagvand, Behrang., Hasan, Ala (2012). Indirect evaporative cooling: Past, present and future potentials. Renewable and Sustainable Energy Reviews 16(9): 6823–6850.

    Google Scholar 

  • Dwyer, T. 2014. Liquid desiccants for dehumidification in building air conditioning systems. The CIBSE Journal CPD Programme.

    Google Scholar 

  • El-Gohary, M.M. 2013. Economical analysis of combined fuel cell generators and absorption chillers. Alexandria Engineering Journal 52(2): 151–158.

    Article  Google Scholar 

  • ElianEnergy. 2011. Fuel cell cars. Retrieved 09/05/2012, from http://www.future-alternative-energy.net/fuel-cell-cars.html.

  • Ellamla, H.R., I. Staffell, P. Bujlo, B.G. Pollet, and S. Pasupathi. 2015. Current status of fuel cell based combined heat and power systems for residential sector. Journal of Power Sources 293: 312–328.

    Article  Google Scholar 

  • Elmer, T. and S. B. Riffat. 2014. State of the art review: Fuel cell technologies in the domestic built environment. in Progress in Sustainable Energy Technologies Vol II: Creating Sustainable Development, ed. by I. Dincer, A. Midilli and H. Kucuk. Cham. New York: Springer International Publishing, p. 247–271.

    Google Scholar 

  • Elmer, T., M. Worall, S. Wu, and S.B. Riffat. 2015. Fuel cell technology for domestic built environment applications: State of-the-art review. Renewable and Sustainable Energy Reviews 42: 913–931.

    Article  Google Scholar 

  • EU (2004) Directive 2004/8/EC of the European Parliament And Of The Council—On the promotion of cogeneration based on a useful heat demand in the internal energy market and amending Directive 92/42/EEC. Official Journal of the European Union 11.

    Google Scholar 

  • Farhad, S., F. Hamdullahpur, and Y. Yoo. 2010. Performance evaluation of different configurations of biogas-fuelled SOFC micro-CHP systems for residential applications. International Journal of Hydrogen Energy 35(8): 3758–3768.

    Article  Google Scholar 

  • Fan, Liangdong, Chengyang Wang, Mingming Chen, and Bin Zhu. 2013. Recent development of ceria-based (nano) composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. Journal of Power Sources 234: 154–174.

    Google Scholar 

  • FCT. 2013. Fuel cell today: The leading authority on fuel cells: The Fuel Cell Today Industry Review 2013. http://www.fuelcelltoday.com/media/1889744/fct_review_2013.pdf.

  • Fong, K.F., and C.K. Lee. 2014. Investigation on zero grid-electricity design strategies of solid oxide fuel cell trigeneration system for high-rise building in hot and humid climate. Applied Energy 114: 426–433.

    Article  Google Scholar 

  • Fubara, T.C., F. Cecelja, and A. Yang. 2014. Modelling and selection of micro-CHP systems for domestic energy supply: The dimension of network-wide primary energy consumption. Applied Energy 114: 327–334.

    Article  Google Scholar 

  • Gencoglu, M.T., and Z. Ural. 2009. Design of a PEM fuel cell system for residential application. International Journal of Hydrogen Energy 34(12): 5242–5248.

    Article  Google Scholar 

  • Gigliucci, G., L. Petruzzi, E. Cerelli, A. Garzisi, and A. La Mendola. 2004. Demonstration of a residential CHP system based on PEM fuel cells. Journal of Power Sources 131(1–2): 62–68.

    Article  Google Scholar 

  • Gommed, K., and G. Grossman. 2007. Experimental investigation of a liquid desiccant system for solar cooling and dehumidification. Solar Energy 81(1): 131–138.

    Article  Google Scholar 

  • Harrison, J. 2012. E.ON—Smart Homes with Fuel Cell micro CHP. Smart Hydrogen & Fuel Cell Power Conference, Birmingham.

    Google Scholar 

  • Havelský, V. 1999. Energetic efficiency of cogeneration systems for combined heat, cold and power production. International Journal of Refrigeration 22(6): 479–485.

    Article  Google Scholar 

  • Hawkes, A., G. Tiravanti, and M. Leach. 2005. Routes to energy efficiency: Complementary energy service products in the UK residential sector. European Council for an Energy Efficient Economy (ECEEE) 2: 531–540.

    Google Scholar 

  • Hawkes, A., I. Staffell, D. Brett, and N. Brandon. 2009. Fuel cells for micro-combined heat and power generation. Energy & Environmental Science 2(7): 729–744.

    Article  Google Scholar 

  • Huangfu, Y., J.Y. Wu, R.Z. Wang, X.Q. Kong, and B.H. Wei. 2007. Evaluation and analysis of novel micro-scale combined cooling, heating and power (MCCHP) system. Energy Conversion and Management 48(5): 1703–1709.

    Article  Google Scholar 

  • Jain, S., and P.K. Bansal. 2007. Performance analysis of liquid desiccant dehumidification systems. International Journal of Refrigeration 30(5): 861–872.

    Article  Google Scholar 

  • Jradi, M. and S. Riffat. 2014a. Energy performance of an innovative liquid desiccant dehumidification system with a counter-flow heat and mass exchanger using potassium formate. Renewable Bioresources 2(5).

    Google Scholar 

  • Jradi, M., and S. Riffat. 2014b. Experimental investigation of a biomass-fuelled micro-scale tri-generation system with an organic Rankine cycle and liquid desiccant cooling unit. Energy 71: 80–93.

    Article  Google Scholar 

  • Kazempoor, P., V. Dorer, and A. Weber. 2011. Modelling and evaluation of building integrated SOFC systems. International Journal of Hydrogen Energy 36(20): 13241–13249.

    Article  Google Scholar 

  • Khatri, K.K., D. Sharma, S.L. Soni, and D. Tanwar. 2010. Experimental investigation of CI engine operated micro-trigeneration system. Applied Thermal Engineering 30(11–12): 1505–1509.

    Article  Google Scholar 

  • Kong, X.Q., R.Z. Wang, J.Y. Wu, X.H. Huang, Y. Huangfu, D.W. Wu, and Y.X. Xu. 2005. Experimental investigation of a micro-combined cooling, heating and power system driven by a gas engine. International Journal of Refrigeration 28(7): 977–987.

    Article  Google Scholar 

  • Kozubal, W., J. Woods, J. Burch, A. Boranian and T. Merrigan. 2011. Desiccant enhanced evaporative air-conditioning (DEVap): Evaluation of a new concept in ultra efficient air conditioning. Technical Report NREL/TP-5500-49722, January 2011, Contract No. DE-AC36-08GO28308.

    Google Scholar 

  • Kozubal, E., J. Woods and R. Judkoff. 2012. Development and analysis of desiccant enhanced evaporative air conditioner prototype. National Renewable Energy Laboratory.

    Google Scholar 

  • Kuhn, V., J. Klemeš, and I. Bulatov. 2008. MicroCHP: Overview of selected technologies, products and field test results. Applied Thermal Engineering 28(16): 2039–2048.

    Article  Google Scholar 

  • Liu, S. 2008. A novel heat recovery/desiccant cooling system. PhD: The University of Nottingham.

    Google Scholar 

  • Liu, X.H., K.C. Geng, B.R. Lin, and Y. Jiang. 2004. Combined cogeneration and liquid-desiccant system applied in a demonstration building. Energy and Buildings 36(9): 945–953.

    Article  Google Scholar 

  • Lowenstein, A. 2008. Review of liquid desiccant technology for HVAC applications. American Society of Heating, Refrigerating and Air-Conditioning Engineers 14(6): 819–839.

    Google Scholar 

  • Lychnos, G., and P.A. Davies. 2012. Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates. Energy 40(1): 116–130.

    Article  Google Scholar 

  • Maghanki, M.M., B. Ghobadian, G. Najafi, and R.J. Galogah. 2013. Micro combined heat and power (MCHP) technologies and applications. Renewable and Sustainable Energy Reviews 28: 510–524.

    Article  Google Scholar 

  • Malico, I., A.P. Carvalhinho, and J. Tenreiro. 2009. Design of a trigeneration system using a high-temperature fuel cell. International Journal of Energy Research 33(2): 144–151.

    Article  Google Scholar 

  • Margalef, P., and S. Samuelsen. 2010. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller. Journal of Power Sources 195(17): 5674–5685.

    Article  Google Scholar 

  • Mei, L., and Y.J. Dai. 2008. A technical review on use of liquid-desiccant dehumidification for air-conditioning application. Renewable and Sustainable Energy Reviews 12(3): 662–689.

    Article  Google Scholar 

  • Mı́guez, J. L., S. P. Murillo, J., and L. M. López. 2004. Feasibility of a new domestic CHP trigeneration with heat pump: I. Design and development. Applied Thermal Engineering 24(10): 1409–1419.

    Google Scholar 

  • Minciuc, E., O. Le Corre, V. Athanasovici, and M. Tazerout. 2003. Fuel savings and CO2 emissions for tri-generation systems. Applied Thermal Engineering 23(11): 1333–1346.

    Article  Google Scholar 

  • Minh, N.Q. 2004. Solid oxide fuel cell technology—features and applications. Solid State Ionics 174(1–4): 271–277.

    Article  Google Scholar 

  • O’Hayre, R., S. K. Cha, W. Colella and F. B. Prinz. 2006. Fuel cell fundamentals. New York: Wiley.

    Google Scholar 

  • Ouazia, B., H. Barhoun, K. Haddad, M. Armstrong, R. G. Marchand and F. Szadkowski. 2009. Desiccant-evaporative cooling system for residential buildings. in 12th Canadian Conference on Building Science and Technology, Montréal, Québec, Institute for Research in Construction.

    Google Scholar 

  • Peht, M., M. Cames, C. Fischer, B. Prateorius, L. Schneider, K. Schumacher, and J. Voss. 2006. Micro cogeneration towards dencentralized energy systems. Berlin: Springer.

    Google Scholar 

  • Pérez-Lombard, L., J. Ortiz, and C. Pout. 2008. A review on buildings energy consumption information. Energy and Buildings 40(3): 394–398.

    Article  Google Scholar 

  • Pietruschka, D., U. Eicker, M. Huber, and J. Schumacher. 2006. Experimental performance analysis and modelling of liquid desiccant cooling systems for air conditioning in residential buildings. International Journal of Refrigeration 29(1): 110–124.

    Article  Google Scholar 

  • Pilatowsky, I., R.J. Romero, C.A. Isaza, S.A. Gamboa, W. Rivera, P.J. Sebastian, and J. Moreira. 2007. Simulation of an air conditioning absorption refrigeration system in a co-generation process combining a proton exchange membrane fuel cell. International Journal of Hydrogen Energy 32(15): 3174–3182.

    Article  Google Scholar 

  • Pilatowsky, I., R.J. Romero, C.A. Isaza, S.A. Gamboa, P.J. Sebastian, and W. Rivera. 2011. Cogeneration fuel cell—Sorption air conditioning systems. London: Springer.

    Book  Google Scholar 

  • Porteiro, J., J. L. Mı́guez, S. Murillo, L. M. López. 2004. Feasibility of a new domestic CHP trigeneration with heat pump: II. Availability analysis. Applied Thermal Engineering 24(10): 1421–1429.

    Google Scholar 

  • Qiu, G., H. Liu and S. Riffat. 2012. Experimental investigation of a liquid desiccant cooling system driven by flue gas waste heat of a biomass boiler. International Journal of Low-Carbon Technologies 8: 165–172.

    Google Scholar 

  • Qiu, G.Q., and S.B. Riffat. 2010. Experimental investigation on a novel air dehumidifier using liquid desiccant. International Journal of Green Energy 7(2): 174–180.

    Article  Google Scholar 

  • Ren, H., and W. Gao. 2010. Economic and environmental evaluation of micro CHP systems with different operating modes for residential buildings in Japan. Energy and Buildings 42(6): 853–861.

    Article  MathSciNet  Google Scholar 

  • Riffat, S. 2012. EU project proposal: Durable Solid Oxide Fuel Cell Tri-generation System for Low Carbon Buildings. Project 303454 - TriSOFC.

    Google Scholar 

  • Sammes, N.M., and R. Boersma. 2000. Small-scale fuel cells for residential applications. Journal of Power Sources 86(1–2): 98–110.

    Article  Google Scholar 

  • Smith, S.T., V.I. Hanby, and C. Harpham. 2011. A probabilistic analysis of the future potential of evaporative cooling systems in a temperate climate. Energy and Buildings 43(2–3): 507–516.

    Article  Google Scholar 

  • Sonar, D., S. L. Soni and D. Sharma. 2014. Micro-trigeneration for energy sustainability: Technologies, tools and trends. Applied Thermal Engineering 71: 790–796.

    Google Scholar 

  • Srikhirin, P., S. Aphornratana, and S. Chungpaibulpatana. 2001. A review of absorption refrigeration technologies. Renewable and Sustainable Energy Reviews 5(4): 343–372.

    Article  Google Scholar 

  • Staffell, I. (2009). Fuel Cells for Domestic Heat and Power: Are They Worth It?, The University of Birmingham.

    Google Scholar 

  • Staffell, I., and R. Green. 2013. The cost of domestic fuel cell micro-CHP systems. International Journal of Hydrogen Energy 38(2): 1088–1102.

    Article  Google Scholar 

  • Steele, B.C.H. 1999. Fuel-cell technology: Running on natural gas. Nature 400(6745): 619–621.

    Article  Google Scholar 

  • Steinberger-Wilckens, R. 2013. Fuel cells and hydrogen joint undertaking: Evaluating the performance of fuel cells in european energy supply grids (FC-EuroGrid). Fuel Cells and Hydrogen Joint Undertaking.

    Google Scholar 

  • Studak, J. and J. L. Peterson. 1988. A preliminary evaluation of alternative liquid desiccants for a hybrid desiccant air conditioner. Energy Systems Laboratory. http://esl.tamu.edu.

  • Vourliotakis, G., D. Giannopoulos and M. Founti. 2010. Potentials of fuel cells as μ-CHP systems for domestic applications in the framework of energy efficient and sustainable districts. FC-DISTRICT project, 7th FP, CP-IP 260105 FC-DISTRICT.

    Google Scholar 

  • Wang, J., C. M. Li, J. H. Liu, S. C. Liu and J. Chen. 2009 A new air-conditioning system of liquid desiccant and evaporation cooling. College of Urban Construction & Environmental Engineering University of Shanghai for Science and Technology Shanghai, P.R. China.

    Google Scholar 

  • Welch, T. 2008. CIBSE knowledge series: KS13—Refrigeration. H. Carwarardine and K. Butcher. London: CIBSE Publications.

    Google Scholar 

  • Woods, J., and E. Kozubal. 2013. A desiccant-enhanced evaporative air conditioner: Numerical model and experiments. Energy Conversion and Management 65: 208–220.

    Article  Google Scholar 

  • Wu, D.W., and R.Z. Wang. 2006. Combined cooling, heating and power: A review. Progress in Energy and Combustion Science 32(5–6): 459–495.

    Article  Google Scholar 

  • Wu, J.Y., J.L. Wang, S. Li, and R.Z. Wang. 2014. Experimental and simulative investigation of a micro-CCHP (micro combined cooling, heating and power) system with thermal management controller. Energy 68: 444–453.

    Article  Google Scholar 

  • Yadav, Y.K., and S.C. Kaushik. 1991. Psychometric techno-economics assessment and parametric study of vaporcompression and solid/liquid hybrid air-conditioning system. Heat Recovery CHP 11(6): 563–572.

    Article  Google Scholar 

  • Yu, Z., Jitian Han, and Xianqi Cao. 2011. Investigation on performance of an integrated solid oxide fuel cell and absorption chiller tri-generation system. International Journal of Hydrogen Energy 36(19): 12561–12573.

    Article  Google Scholar 

  • Zhang, L.Z. 2006a. Energy performance of independent air dehumidification systems with energy recovery measures. Energy 31(8–9): 1228–1242.

    Article  Google Scholar 

  • Zhang, L.Z. 2006b. Mass diffusion in a hydrophobic membrane humidification/dehumidification process: The effects of membrane characteristics. Separation Science and Technology 41(8): 1565–1582.

    Article  Google Scholar 

  • Zink, F., Yixin Lu, and Laura Schaefer. 2007. A solid oxide fuel cell system for buildings. Energy Conversion and Management 48(3): 809–818.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo Elmer .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Elmer, T. (2017). Review of the Literature. In: A Novel SOFC Tri-generation System for Building Applications. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-46966-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46966-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46965-2

  • Online ISBN: 978-3-319-46966-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics