Skip to main content

A Web-Based Recommendation System for Engineering Education E-Learning Solutions

  • Chapter
  • First Online:
Engineering Education 4.0
  • 1775 Accesses

Abstract

The e-learning market consists of a wide variety of products, and it is still growing. To find an e-learning solution which fits the particular and situational demands is a very time consuming task, especially for teachers. Moreover, the technical and operational differences between the e-learning solutions are often not easy to understand from the product data and thereby consequences of choices are maybe not clear to the teacher. To solve these problems, a web-based recommendation system for teachers of engineering education is under development. This system is planned to support the decision making process of teachers about the use of an e-learning system. The precondition for setting up a recommendation system is that the desired entries (e.g. products, solutions, music or movies, etc.) are comparable to allow the algorithm to recommend: The current approach is to develop an e-learning scheme and compare the solutions based on this scheme. The determining of the necessary information for each e-learning solution has to be at least a half-automated process to keep the information up-to-date. Since expensive human time is needed to handle the necessary information, some approach with data and text mining as well as text analytics is promising. After the determining phase, each e-learning solution is represented by its data sheet. Apart from the e-learning solutions, also a teacher’s requirements have to be comparable to e-learning solutions to allow the algorithm to recommend. That is why a web-based questionnaire is utilized to catch the teachers’ requirements. A visual user-flow programming language is under development to provide an adequate environment for the development of the questionnaire and as an interface between the e-learning scheme, questionnaire and user-flow. The next step is to develop a functional prototype for the essential text analysis process to proof the concept. It is also required to analyze the current state of the e-learning scheme further to identify clusters of similar subjects, and to identify all critical properties to provide individual solutions for these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Sangrà, D. Vlachopoulos, N. Cabrera, Building an inclusive definition of e-learning: An approach to the conceptual framework. The International Review of Research in Open and Distance Learning 13 (2), 2012, pp. 145–159

    Google Scholar 

  2. S. Schön, M. Ebner, eds., Lehrbuch für Lernen und Lehren mit Technologien, 2nd edn. 2013. http://www.l3t.eu

  3. K. Hamdan, N. Al-Qirim, M. Asmar, The effect of smart board on students behavior and motivation. In: 2012 International Conference on Innovations in Information Technology (IIT). 2012, pp. 162–166

    Google Scholar 

  4. D. Short, Teaching scientific concepts using a virtual world—Minecraft. Teaching Science-the Journal of the Australian Science Teachers Association 58 (3), 2012, p. 55

    Google Scholar 

  5. J. Tyler, B. Cheikes, IEEE P1484.1/D9 - Draft Standard for Learning Technology - Learning Technology Systems Architecture (LTSA). IEEE Standards Activities Department, 2001

    Google Scholar 

  6. V. Devedzic, J. Jovanovic, D. Gasevic, The pragmatics of current e-learning standards. IEEE Internet Computing 11 (3), 2007, pp. 19–27

    Google Scholar 

  7. G. Durand, L. Belliveau, B. Craig, Simple learning design 2.0. In: 2010 IEEE 10th International Conference on Advanced Learning Technologies (ICALT). 2010, pp. 549–551

    Google Scholar 

  8. A. Richert, Einfluss von Lernbiografien und subjektiven Theorien auf selbst gesteuertes Einzellernen mittels E-Learning am Beispiel Fremdsprachenlernen, Europäische Hochschulschriften/European University Studies/Publications Universitaires Européennes, vol. 979. Peter Lang Publishing Group, Frankfurt am Main, Berlin, Bern, Bruxelles, New York, Oxford, Wien, 2009

    Google Scholar 

  9. M. Michelson, S.A. Macskassy, Discovering users’ topics of interest on twitter: a first look. In: Proceedings of the fourth workshop on Analytics for noisy unstructured text data. 2010, p. 73–80

    Google Scholar 

  10. F. Abel, E. Herder, G. Houben, N. Henze, D. Krause, Cross-system user modeling and personalization on the social web. User Modeling and User-Adapted Interaction 23 (2-3), 2013, p. 169–209

    Google Scholar 

  11. M. Duggan, J. Brenner, The demographics of social media users, 2012. Tech. rep., Pew Research Center’s Internet & American Life Project, 2013

    Google Scholar 

  12. L. Johnson, S. Adams Becker, V. Estrada, A. Freeman, NMC Horizon Report: 2014 Higher Education Edition. The New Media Consortium, Austin, Texas, 2014

    Google Scholar 

  13. P. Henry, E-learning technology, content and services. Education + Training 43 (4/5), 2001, p. 249–255

    Google Scholar 

  14. J. Sauer, K. Seibel, B. Rüttinger, The influence of user expertise and prototype fidelity in usability tests. Applied ergonomics 41 (1), 2010, p. 130–140

    Google Scholar 

  15. M. Hu, B. Liu, Mining and summarizing customer reviews. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. 2004, pp. 168–177

    Google Scholar 

  16. M. Hu, B. Liu, Mining opinion features in customer reviews. In: AAAI, vol. 4, 2004, pp. 755–760

    Google Scholar 

  17. M. Rosenblum, The reincarnation of virtual machines. Queue 2 (5), 2004, p. 34–40

    Google Scholar 

  18. M. Fenn, M. Murphy, J. Martin, S. Goasguen, An evaluation of KVM for use in cloud computing. In: Proc. 2nd International Conference on the Virtual Computing Initiative, RTP, NC, USA. 2008

    Google Scholar 

  19. A. Doan, R. Ramakrishnan, A. Halevy, Crowdsourcing systems on the world-wide web. Commun. ACM 54 (4), 2011, p. 86–96

    Google Scholar 

  20. Nov, O. (2007) What motivates wikipedians? Communications of the ACM, 50 (11), pp. 60–64

    Google Scholar 

  21. G. Heyer, U. Quasthoff, T. Wittig, Text Mining: Wissensrohstoff Text: Konzepte, Algorithmen, Ergebnisse. W3L-Verl., Herdecke, 2006

    Google Scholar 

  22. I. Bierschenk, B. Bierschenk, Perspective text analysis: Tutorial to vertex. Kognitionsvetenskaplig forskning: Cognitive Science Research, 2011

    Google Scholar 

  23. T. Nasukawa, T. Nagano, Text analysis and knowledge mining system. IBM Systems Journal 40 (4), 2001, pp. 967–984

    Google Scholar 

  24. W. Jicheng, H. Yuan, W. Gangshan, Z. Fuyan, Web mining: knowledge discovery on the web. In: 1999 IEEE International Conference on Systems, Man, and Cybernetics, 1999. IEEE SMC ’99 Conference Proceedings, vol. 2. 1999, vol. 2, pp. 137–141

    Google Scholar 

  25. G. Pant, P. Srinivasan, F. Menczer, Crawling the web. In: Web Dynamics, Springer, 2004, p. 153–177

    Google Scholar 

  26. C. Castillo, Effective web crawling. In: ACM SIGIR Forum, vol. 39. 2005, vol. 39, p. 55–56

    Google Scholar 

  27. O. Egozi, S. Markovitch, E. Gabrilovich, Concept-based information retrieval using explicit semantic analysis. ACM Transactions on Information Systems (TOIS) 29 (2), 2011, p. 8

    Google Scholar 

  28. Y. Chen, Natural language processing in web data mining. In: 2010 IEEE 2nd Symposium on Web Society (SWS). 2010, pp. 388–391

    Google Scholar 

  29. S. M., S. Vranes, A natural language processing for semantic web services. In: The International Conference on Computer as a Tool, 2005. EUROCON 2005, vol. 1. 2005, vol. 1, pp. 229–232

    Google Scholar 

  30. M. Lobur, A. Romanyuk, M. Romanyshyn, Using NLTK for educational and scientific purposes. In: 2011 11th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM). 2011, pp. 426–428

    Google Scholar 

  31. D. Hils, Visual languages and computing survey: Data flow visual programming languages. Journal of Visual Languages & Computing 3 (1), 1992, pp. 69–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Sommer, T., Bach, U., Richert, A., Jeschke, S. (2016). A Web-Based Recommendation System for Engineering Education E-Learning Solutions. In: Frerich, S., et al. Engineering Education 4.0. Springer, Cham. https://doi.org/10.1007/978-3-319-46916-4_23

Download citation

Publish with us

Policies and ethics