Skip to main content

Measurement of the Cognitive Assembly Planning Impact

  • Chapter
  • First Online:
  • 1733 Accesses

Abstract

Within highly automated assembly systems, the planning effort forms a large part of production costs. Due to shortening product lifecycles, changing customer demands and therefore an increasing number of ramp-up processes these costs even rise. So assembly systems should reduce these efforts and simultaneously be flexible for quick adaption to changes in products and their variants. A cognitive interaction system in the field of assembly planning systems is developed within the Cluster of Excellence “Integrative production technology for high-wage countries” at RWTH Aachen University which integrates several cognitive capabilities according to human cognition. This approach combines the advantages of automation with the flexibility of humans. In this paper the main principles of the system’s core component – the cognitive control unit – are presented to underline its advantages with respect to traditional assembly systems. Based on this, the actual innovation of this paper is the development of key performance indicators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. Brecher, F. Klocke, R. Schmitt, G. Schuh, Excellence in Production. Apprimus Verlag, Aachen, 2007

    Google Scholar 

  2. M. Mayer, C. Schlick, D. Ewert, D. Behnen, S. Kuz, B. Odenthal, B. Kausch, Automation of robotic assembly processes on the basis of an architecture of human cognition. Production Engineering Research and Development 5 (4), pp. 423–431

    Google Scholar 

  3. A. Pufall, J.C. Fransoo, A.d. Kok, What determines product ramp-up performance? A review of characteristics based on a case study at Nokia mobile phones, BETA publicaties. Preprints, vol. WP 228. [Beta, Research School for Operations Management and Logistics], Eindhoven, 2007

    Google Scholar 

  4. H. Winkler, M. Heins, P. Nyhuis, A controlling system based on cause-effect relationships for the ramp-up of production systems. Production Engineering Research and Development 1 (1), 2007, pp. 103–111

    Google Scholar 

  5. E. Hauck, A. Gramatke, K. Henning, A software architecture for cognitive technical systems suitable for an assembly task in a production environment: Automation control - theory and practice. In: Two Stage Approaches for Modeling Pollutant Emission of Diesel Engine Based on Kriging Model, ed. by El Hassane Brahmi, Ghislaine Joly-Blanchard, Lilianne Denis-Vidal, Nassim Boudaoud, Zohra Cherfi, INTECH Open Access Publisher, 2009, pp. 13–28

    Google Scholar 

  6. J. Hoffmann, Ff: the fast-forward planning system. The AI Magazine (22), 2001

    Google Scholar 

  7. C. Castellini, E. Giunchiglia, A. Tacchella, O. Tacchella, Improvements to satbased conformant planning. In: Proceedings of the 6th European Conference on Planning (ECP-01), ed. by A. Cesta, D. Borrajo. AAAI Press, Palo Alto, California, 2001

    Google Scholar 

  8. J. Hoffmann, R. Brafman, Contingent planning via heuristic forward search with implicit belief states. In: Proceedings of ICAPS’05. 2005, pp. 71–80

    Google Scholar 

  9. S.G. Kaufman, R.H. Wilson, R. Calton, A.L. Ames, Automated planning and programming of assembly of fully 3d mechanisms, Technical Report, vol. SAND96-0433. Sandia National Laboratories, 1996

    Google Scholar 

  10. U. Thomas, Automatisierte Programmierung von Robotern für Montageaufgaben, Fortschritte in der Robotik, vol. 13. Shaker Verlag, Aachen, 2008

    Google Scholar 

  11. M.F. Zaeh, M. Wiesbeck, A model for adaptively generating assembly instructions using state-based graph. In: Manufacturing systems and technologies for the new frontier, ed. by M. Mitsuishi, K. Ueda, F. Kimura, Springer, London, 2008, pp. 195–198

    Google Scholar 

  12. D. Ewert, S. Thelen, R. Kunze, M. Mayer, D. Schilberg, S. Jeschke, A graph based hybrid approach of offline pre-planning and online re-planning for efficient assembly under realtime constraints. In: ICIRA 2010: 2010 International Conference on Intelligent Robotics and Application, LNAI, vol. 6425, ed. by H. Liu, H. Ding, Z. Xiong, X. Zhu. Springer, Berlin, 2010, LNAI, vol. 6425, pp. 44–55

    Google Scholar 

  13. M. Mayer, B. Odenthal, M. Faber, W. Kabuss, B. Kausch, C. Schlick, Simulation of human cognition in self-optimizing assembly systems. In: Proceedings of the IEA2009 - 17th World Congress on Ergonomics. 2009

    Google Scholar 

  14. Homem de Mello, L.S., A.C. Sanderson, Representations of mechanical assembly sequences. IEEE Transactions on Robotics and Automation 7 (2), 1991, pp. 211–227

    Google Scholar 

  15. R.S. Chen, K.Y. Lu, P.H. Tai, Optimizing assembly planning through a three-stage integrated approach. International Journal of Production Economics 88 (3), 2004, pp. 243–256

    Google Scholar 

  16. P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and 4 (2), 2007, pp. 100–107

    Google Scholar 

  17. P. Langley, J.E. Laird, S. Rogers, Cognitive architectures: Research issues and challenges. Journal of Cognitive Systems Research 10 (2), 2009, pp. 141–160

    Google Scholar 

  18. E. Hauck, Ein kognitives Interaktionssystem zur Ansteuerung einer Montagezelle, VDI Reihe 10, vol. 812. VDI-Verlag, Düsseldorf, 2011

    Google Scholar 

  19. D. Schilberg, Architektur eines datenintegrators zur durchgängigen kopplung von verteilten numerischen simulationen. Dissertation, RWTH Aachen, 2010

    Google Scholar 

  20. Gerevini, A. E., P. Haslum, Long, D., Saetti, A., Y. Dimopoulos, Deterministic planning in the fifth international planning competition: Pddl3 and experimental evaluation of the planners. In: Artificial Intelligence, vol. 173, Elsevier Science, 2009, pp. 619–668

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Büscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Büscher, C., Hauck, E., Schilberg, D., Jeschke, S. (2016). Measurement of the Cognitive Assembly Planning Impact. In: Frerich, S., et al. Engineering Education 4.0. Springer, Cham. https://doi.org/10.1007/978-3-319-46916-4_1

Download citation

Publish with us

Policies and ethics