Skip to main content

Multidetector-Row CT Basics, Technological Evolution, and Current Technology

  • Chapter
  • First Online:
Body MDCT in Small Animals

Abstract

This introductory chapter briefly describes the basic principles of multidetector-row CT, followed by an overview of the technological evolution from the first multidetector-row systems to today’s latest technology. A special section is dedicated to the technological principles and applications of Dual Energy CT. The chapter is concluded by a section on post-processing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achenbach S, Ulzheimer S, Baum U, et al. Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation. 2000;102:2823–8.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez RE, Macovski A. Energy-selective reconstructions in x-ray computerised tomography. Phys Med Biol. 1976;21:733.

    Article  CAS  PubMed  Google Scholar 

  • Bier G, Mustafa DF, Kloth C, et al. Improved follow-up and response monitoring of thoracic cage involvement in multiple myeloma using a novel CT postprocessing software: the lessons we learned. Am J Roentgenol. 2016;206:57–63.

    Article  Google Scholar 

  • Bittner DO, Arnold M, Klinghammer L, et al. Contrast volume reduction using third generation dual source computed tomography for the evaluation of patients prior to transcatheter aortic valve implantation. Eur Radiol. 2016;26:4497–504.

    Article  PubMed  Google Scholar 

  • Bridoux A, Hutt A, Faivre J-B, et al. Coronary artery visibility in free-breathing young children on non-gated chest CT: impact of temporal resolution. Pediatr Radiol. 2015;45:1761–70.

    Article  PubMed  Google Scholar 

  • Cai X-R, Feng Y-Z, Qiu L, et al. Iodine distribution map in dual-energy computed tomography pulmonary artery imaging with rapid kVp switching for the diagnostic analysis and quantitative evaluation of acute pulmonary embolism. Acad Radiol. 2015;22:743–51.

    Article  PubMed  Google Scholar 

  • Calhoun PS, Kuszyk BS, Heath DG, et al. Three-dimensional volume rendering of spiral CT Data: theory and method 1. Radiographics. 1999;19:745–64.

    Article  CAS  PubMed  Google Scholar 

  • Carmi R, Naveh G, Altman A. Material separation with dual-layer CT. IEEE; 2005, 3 pp.

    Google Scholar 

  • Caruso D, Eid M, Schoepf UJ, et al. Dynamic CT myocardial perfusion imaging. Eur J Radiol. 2016;85:1893–9.

    Article  PubMed  Google Scholar 

  • Coche E, Vlassenbroek A, Roelants V, et al. Evaluation of biventricular ejection fraction with ECG-gated 16-slice CT: preliminary findings in acute pulmonary embolism in comparison with radionuclide ventriculography. Eur Radiol. 2005;15:1432–40.

    Article  PubMed  Google Scholar 

  • Dappa E, Higashigaito K, Fornaro J, et al. Cinematic rendering–an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging. 2016;7:849–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Cecco CN, Muscogiuri G, Schoepf UJ, et al. Virtual unenhanced imaging of the liver with third-generation dual-source dual-energy CT and advanced modeled iterative reconstruction. Eur J Radiol. 2016;85:1257–64.

    Article  PubMed  Google Scholar 

  • Dewey M, Zimmermann E, Deissenrieder F, et al. Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy. Circulation. 2009;120:867–75.

    Article  PubMed  Google Scholar 

  • Duan X, Wang J, Leng S, et al. Electronic noise in CT detectors: impact on image noise and artifacts. Am J Roentgenol. 2013;201:W626–32.

    Article  Google Scholar 

  • Engel KJ, Herrmann C, Zeitler G. X-ray scattering in single-and dual-source CT. Med Phys. 2008;35:318–32.

    Article  PubMed  Google Scholar 

  • Euler A, Parakh A, Falkowski AL, et al. Initial results of a single-source dual-energy computed tomography technique using a split-filter: assessment of image quality, radiation dose, and accuracy of dual-energy applications in an in vitro and in vivo study. Investig Radiol. 2016;51:491–8.

    Article  CAS  Google Scholar 

  • Faby S, Kuchenbecker S, Sawall S, et al. Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: a simulation study. Med Phys. 2015;42:4349–66.

    Article  PubMed  Google Scholar 

  • Flohr T, Stierstorfer K, Bruder H, et al. New technical developments in multislice CT – Part 1: approaching isotropic resolution with sub-millimeter 16-slice scanning. ROFO Fortschr Geb Rontgenstr Nuklearmed. 2002;174:839–45.

    Article  CAS  PubMed  Google Scholar 

  • Flohr T, Stierstorfer K, Ulzheimer S, et al. Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys. 2005;32:2536–47.

    Article  CAS  PubMed  Google Scholar 

  • Flohr TG, McCollough CH, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16:256–68.

    Article  PubMed  Google Scholar 

  • Flohr TG, Leng S, Yu L, et al. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality. Med Phys. 2009;36:5641–53.

    Article  Google Scholar 

  • Flohr TG, De Cecco CN, Schmidt B, et al. Computed tomographic assessment of coronary artery disease: state-of-the-art imaging techniques. Radiol Clin N Am. 2015;53:271–85.

    Article  PubMed  Google Scholar 

  • Franca C, Levin-Plotnik D, Sehgal V, et al. Use of three-dimensional spiral computed tomography imaging for staging and surgical planning of head and neck cancer. J Digit Imaging. 2000;13:24–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabbai M, Leichter I, Mahgerefteh S, Sosna J. Spectral material characterization with dual-energy CT: comparison of commercial and investigative technologies in phantoms. Acta Radiol. 2015;56:960–9.

    Article  PubMed  Google Scholar 

  • George RT, Mehra VC, Chen MY, et al. Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease: a head-to-head comparison from the CORE320 multicenter diagnostic performance study. Radiology. 2014;272:407–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordic S, Husarik DB, Desbiolles L, et al. High-pitch coronary CT angiography with third generation dual-source CT: limits of heart rate. Int J Cardiovasc Imaging. 2014;30:1173–9.

    Article  PubMed  Google Scholar 

  • Grant KL, Flohr TG, Krauss B, et al. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Investig Radiol. 2014;49:586–92.

    Article  Google Scholar 

  • Haubenreisser H, Bigdeli A, Meyer M, et al. From 3D to 4D: Integration of temporal information into CT angiography studies. Eur J Radiol. 2015;84:2421–4.

    Article  PubMed  Google Scholar 

  • Hou DJ, Tso DK, Davison C, et al. Clinical utility of ultra high pitch dual source thoracic CT imaging of acute pulmonary embolism in the emergency department: are we one step closer towards a non-gated triple rule out? Eur J Radiol. 2013;82:1793–8.

    Article  PubMed  Google Scholar 

  • Jepperson MA, Cernigliaro JG, Sella D, et al. Dual-energy CT for the evaluation of urinary calculi: image interpretation, pitfalls and stone mimics. Clin Radiol. 2013;68:e707–14.

    Article  CAS  PubMed  Google Scholar 

  • Johnson TR. Dual-energy CT: general principles. Am J Roentgenol. 2012;199:S3–8.

    Article  Google Scholar 

  • Johnson TR, Nikolaou K, Wintersperger BJ, et al. ECG-gated 64-MDCT angiography in the differential diagnosis of acute chest pain. Am J Roentgenol. 2007;188:76–82.

    Article  Google Scholar 

  • Kalender WA, Perman W, Vetter J, Klotz E. Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys. 1986;13:334–9.

    Article  CAS  PubMed  Google Scholar 

  • Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology. 1990;176:181–3.

    Article  CAS  PubMed  Google Scholar 

  • Kaup M, Wichmann JL, Scholtz J-E, et al. Dual-energy CT–based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology. 2016;280:510–9.

    Article  PubMed  Google Scholar 

  • Klingenbeck-Regn K, Schaller S, Flohr T, et al. Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol. 1999;31:110–24.

    Article  CAS  PubMed  Google Scholar 

  • Krauss B, Grant KL, Schmidt BT, Flohr TG. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency. Investig Radiol. 2015;50:114–8.

    Article  Google Scholar 

  • Leber AW, Knez A, von Ziegler F, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2005;46:147–54.

    Article  PubMed  Google Scholar 

  • Lell MM, Jost G, Korporaal JG, et al. Optimizing contrast media injection protocols in state-of-the art computed tomographic angiography. Investig Radiol. 2015;50:161–7.

    Article  Google Scholar 

  • Li B, Toth TL, Hsieh J, Tang X. Simulation and analysis of image quality impacts from single source, ultra-wide coverage CT scanner. J X-Ray Sci Technol. 2012;20:395–404.

    Google Scholar 

  • Liang Y, Kruger RA. Dual-slice spiral versus single-slice spiral scanning: comparison of the physical performance of two computed tomography scanners. Med Phys. 1996;23:205–20.

    Article  CAS  PubMed  Google Scholar 

  • Macari M, Bini EJ, Xue X, et al. Colorectal neoplasms: prospective comparison of thin-section low-dose multi–detector row CT colonography and conventional colonoscopy for detection 1. Radiology. 2002;224:383–92.

    Article  PubMed  Google Scholar 

  • Manniesing R, Oei MT, van Ginneken B, Prokop M. Quantitative dose dependency analysis of whole-brain CT perfusion imaging. Radiology. 2015;278:190–7.

    Article  PubMed  Google Scholar 

  • Meier A, Higashigaito K, Martini K, et al. Dual energy CT pulmonary angiography with 6g iodine—a propensity score-matched study. PLoS One. 2016;11:e0167214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meinel FG, Graef A, Bamberg F, et al. Effectiveness of automated quantification of pulmonary perfused blood volume using dual-energy CTPA for the severity assessment of acute pulmonary embolism. Investig Radiol. 2013;48:563–9.

    Article  CAS  Google Scholar 

  • Melzer R, Pauli C, Treumann T, Krauss B. Gout tophus detection—a comparison of dual-energy CT (DECT) and histology. Semin Arthritis Rheum. 2014;43:662–5.

    Article  PubMed  Google Scholar 

  • Mori S, Endo M, Tsunoo T, et al. Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imaging. Med Phys. 2004;31:1348–56.

    Article  PubMed  Google Scholar 

  • Morsbach F, Sah B-R, Spring L, et al. Perfusion CT best predicts outcome after radioembolization of liver metastases: a comparison of radionuclide and CT imaging techniques. Eur Radiol. 2014;24:1455–65.

    Article  PubMed  Google Scholar 

  • Napel S, Rubin GD, Jeffrey RB. STS-MIP: a new reconstruction technique for CT of the chest. J Comput Assist Tomogr. 1993;17:832–8.

    Article  CAS  PubMed  Google Scholar 

  • Nieman K, Cademartiri F, Lemos PA, et al. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation. 2002;106:2051–4.

    Article  PubMed  Google Scholar 

  • Ohnesorge B, Flohr T, Becker C, et al. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience 1. Radiology. 2000;217:564–71.

    Article  CAS  PubMed  Google Scholar 

  • Ohno Y, Koyama H, Matsumoto K, et al. Differentiation of malignant and benign pulmonary nodules with quantitative first-pass 320–detector row perfusion CT versus FDG PET/CT. Radiology. 2011;258:599–609.

    Article  PubMed  Google Scholar 

  • Petersilka M, Bruder H, Krauss B, et al. Technical principles of dual source CT. Eur J Radiol. 2008;68:362–8.

    Article  PubMed  Google Scholar 

  • Petersilka M, Stierstorfer K, Bruder H, Flohr T. Strategies for scatter correction in dual source CT. Med Phys. 2010;37:5971–92.

    Article  CAS  PubMed  Google Scholar 

  • Petersilka M, Allmendinger T, Stierstorfer K. 3D image-based scatter estimation and correction for multi-detector CT imaging. International Society for Optics and Photonics; 2014. pp. 903309–903309.

    Google Scholar 

  • Postma AA, Das M, Stadler AA, Wildberger JE. Dual-energy CT: what the neuroradiologist should know. Curr Radiol Rep. 2015;3:1–16.

    Article  Google Scholar 

  • Primak A, Ramirez Giraldo J, Liu X, et al. Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys. 2009;36:1359–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raju R, Cury RC, Precious B, et al. Comparison of image quality, and diagnostic interpretability of a new volumetric high temporal resolution scanner versus 64-slice MDCT. Clin Imaging. 2016;40:205–11.

    Article  PubMed  Google Scholar 

  • Raman R, Napel S, Rubin GD. Curved-slab maximum intensity projection: method and evaluation. Radiology. 2003;229(1):255–60.

    Article  PubMed  Google Scholar 

  • Remy-Jardin M, Tillie-Leblond I, Szapiro D, et al. Spiral CT angiography (SCTA) of pulmonary embolism (PE) in patients with underlying respiratory disease: impact of multislice CT (MSCT) on image quality and diagnostic accuracy. Eur Radiol. 2002;12:149.

    Article  Google Scholar 

  • Rubin GD, Beaulieu CF, Argiro V, et al. Perspective volume rendering of CT and MR images: applications for endoscopic imaging. Radiology. 1996;199:321–30.

    Article  CAS  PubMed  Google Scholar 

  • Rybicki FJ, Otero HJ, Steigner ML, et al. Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging. 2008;24:535–46.

    Article  PubMed  Google Scholar 

  • Sabel BO, Buric K, Karara N, et al. High-pitch CT pulmonary angiography in third generation dual-source CT: image quality in an unselected patient population. PLoS One. 2016;11:e0146949.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salem R, Remy-Jardin M, Delhaye D, et al. Integrated cardio-thoracic imaging with ECG-gated 64-slice multidetector-row CT: initial findings in 133 patients. Eur Radiol. 2006;16:1973–81.

    Article  PubMed  Google Scholar 

  • Sandfort V, Ahlman MA, Jones EC, et al. High pitch third generation dual-source CT: coronary and cardiac visualization on routine chest CT. J Cardiovasc Comput Tomogr. 2016;10:282–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoepf UJ, Becker CR, Hofmann LK, et al. Multislice CT angiography. Eur Radiol. 2003;13:1946–61.

    Article  PubMed  Google Scholar 

  • Schulz B, Kuehling K, Kromen W, et al. Automatic bone removal technique in whole-body dual-energy CT angiography: performance and image quality. Am J Roentgenol. 2012;199:W646–50.

    Article  Google Scholar 

  • Secchi F, De Cecco CN, Spearman JV, et al. Monoenergetic extrapolation of cardiac dual energy CT for artifact reduction. Acta Radiol. 2014. doi:10.1177/0284185114527867.

  • So A, Imai Y, Nett B, et al. Technical note: evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging. Med Phys. 2016;43:4821–32.

    Article  PubMed  Google Scholar 

  • Sudarski S, Apfaltrer P, Nance JW, et al. Objective and subjective image quality of liver parenchyma and hepatic metastases with virtual monoenergetic dual-source dual-energy CT reconstructions: an analysis in patients with gastrointestinal stromal tumor. Acad Radiol. 2014;21:514–22.

    Article  PubMed  Google Scholar 

  • Sun M, Lu B, Wu R, et al. Diagnostic accuracy of dual-source CT coronary angiography with prospective ECG-triggering on different heart rate patients. Eur Radiol. 2011;21:1635–42.

    Article  PubMed  Google Scholar 

  • Thomas C, Schabel C, Krauss B, et al. Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. Am J Roentgenol. 2015;204:W324–31.

    Article  Google Scholar 

  • Tkaczyk JE, Rodrigues R, Shaw J, et al. Atomic number resolution for three spectral CT imaging systems. International Society for Optics and Photonics; 2007. pp. 651009–651009.

    Google Scholar 

  • Tomizawa N, Maeda E, Akahane M, et al. Coronary CT angiography using the second-generation 320-detector row CT: assessment of image quality and radiation dose in various heart rates compared with the first-generation scanner. Int J Cardiovasc Imaging. 2013;29:1613–8.

    Article  PubMed  Google Scholar 

  • Uhrig M, Sedlmair M, Schlemmer H, et al. Monitoring targeted therapy using dual-energy CT: semi-automatic RECIST plus supplementary functional information by quantifying iodine uptake of melanoma metastases. Cancer Imaging. 2013;13:306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westwood ME, Raatz HD, Misso K, et al. Systematic review of the accuracy of dual-source cardiac CT for detection of arterial stenosis in difficult to image patient groups. Radiology. 2013;267:387–95.

    Article  PubMed  Google Scholar 

  • Willems PW, Taeshineetanakul P, Schenk B, et al. The use of 4D-CTA in the diagnostic work-up of brain arteriovenous malformations. Neuroradiology. 2012;54:123–31.

    Article  PubMed  Google Scholar 

  • Winklehner A, Gordic S, Lauk E, et al. Automated attenuation-based tube voltage selection for body CTA: Performance evaluation of 192-slice dual-source CT. Eur Radiol. 2015;25:2346–53.

    Article  PubMed  Google Scholar 

  • Winklhofer S, Benninger E, Spross C, et al. CT metal artefact reduction for internal fixation of the proximal humerus: value of mono-energetic extrapolation from dual-energy and iterative reconstructions. Clin Radiol. 2014;69:e199–206.

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Christner JA, Leng S, et al. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys. 2011;38:6371–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Li X, Liu B. Objective characterization of GE discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys. 2011;38:1178–88.

    Article  PubMed  Google Scholar 

  • Zhang LJ, Zhao YE, Schoepf UJ, et al. Seventy–peak kilovoltage high-pitch thoracic aortic CT angiography without ECG gating: evaluation of image quality and radiation dose. Acad Radiol. 2015;22:890–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Faby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Faby, S., Flohr, T. (2017). Multidetector-Row CT Basics, Technological Evolution, and Current Technology. In: Bertolini, G. (eds) Body MDCT in Small Animals. Springer, Cham. https://doi.org/10.1007/978-3-319-46904-1_1

Download citation

Publish with us

Policies and ethics