Skip to main content

Detection of Mycotoxins in Food: Applications of Rapid and Reliable Tools in a Biosecurity Context

  • Chapter
  • First Online:
Practical Tools for Plant and Food Biosecurity

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 8))

Abstract

Several fungi, including plant pathogens and endophytes, produce secondary metabolites with biological activity traits (e.g. antibiotics, insecticides, and mycotoxins). Mycotoxins can cause severe intoxication of livestock and humans who consume food that is contaminated. Over 350 mycotoxins which may impact food safety, have been recognized, and probably many more exist. Awareness of the significant impacts of mycotoxins on animal and human health has led to the development of analytical methods for their identification and surveillance in food and feed. The wide range of crops, commodities and agricultural systems in which mycotoxins can be found, presents a challenge for effective analyses. The reliability of quantitative analysis depends on careful execution of all component steps from sampling through the extraction and cleanup. Traditional methods, such as chromatography, together with new and improved ones, can meet these needs. Sophisticated UHPLC–MS/MS technologies are currently the cutting-edge methodology for simultaneous multi-mycotoxin analysis in a wide range of matrices. A combination of the cutting-edge technology with effective sample preparation, can provide robust and practical answers for mycotoxin detection. On the other hand, rapid, field deployable methods (such as dipsticks and biosensors) are significantly less expensive while still providing acceptable accuracy. These techniques can be applied and adapted for the specific requirements of biosecurity. The likelihood of discovery of yet-unknown mycotoxins, and the specific context of biosecurity, calls for additional improved technologies for rapid and robust analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzali D, Padash M, Mostafavi A (2015) Determination of trace amounts of zearalenone in beverage samples with an electrochemical sensor. Mycotoxin Res 31:203–208

    Article  CAS  PubMed  Google Scholar 

  • Aguilera-Luiz P, Plaza-Bolanos R, Romero-Gonzalez JL, Martınez-Vidal A (2011) Comparison of the efficiency of different extraction methods for the simultaneous determination of mycotoxins and pesticides in milk samples by ultra high-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 399:2863–2875

    Article  CAS  PubMed  Google Scholar 

  • Al-Hadithi N, Kössler P, Karlovsky P (2015) Determination of ochratoxin A in wheat and maize by solid bar microextraction with liquid chromatography and fluorescence detection. Toxins 7:3000–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431

    CAS  PubMed  Google Scholar 

  • Anfossi L, Di Nardo F, Giovannoli C, Passini C, Baggiani C (2015) Enzyme immunoassay for monitoring aftatoxin in eggs. Food Control 57:115–121

    Article  CAS  Google Scholar 

  • Arroyo-Manzanares N, Gamiz-Gracia L, Garcia-Campana AM, Soto-Chinchilla JJ, Garcia-Ayuso LE (2010) On-line preconcentration for the determination of aflatoxins in rice samples by micellar electrokinetic capillary chromatography with laser-induced fluorescence detection. Electrophoresis 31:2180–2185

    Article  CAS  PubMed  Google Scholar 

  • Arroyo-Manzanares N, Huertas-Perez JF, Gamiz-Garcia L, Garcia-Campana AM (2015) Simple and efficient methodology to determine mycotoxins in cereal syrups. Food Chem 177:274–279

    Article  CAS  PubMed  Google Scholar 

  • Baggiani C, Anfossi L, Giovannoli C (2007) Solid phase extraction of food contaminants using molecular imprinted polymers. Anal Chim Acta 591:29–39

    Article  CAS  PubMed  Google Scholar 

  • Berthiller F, Crews C, Dall’Asta C, De Saeger S, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J (2013) Masked mycotoxins: a review. Mol Nutr Food Res 57:165–186

    Article  CAS  PubMed  Google Scholar 

  • Berthiller F, Burdaspal PA, Crews C, Iha MH, Krska R, Lattanzio VM, MacDonald S, Malone RJ, Maragos C, Solfrizzo M, Stroka J, Whitaker TB (2014) Developments in mycotoxin analysis: an update for 2012–2013. World Mycotoxin J 7:3–33

    Article  CAS  Google Scholar 

  • Bueno D, Istamboulie G, Munoz R, Marty JL (2015) Determination of mycotoxins in food: a review of bioanalytical to analytical methods. Appl Spectrosc Rev 50:728–774

    Article  CAS  Google Scholar 

  • CAC (2012) Report of the sixth session of the Codex Committee on Contaminants in Foods. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Cajka T, Vaclavikova M, Dzuman Z, Vaclavik L, Ovesna J, Hajsolva J (2014) Rapid LC–MS-based metabolomics method to study the Fusarium infection of barley. J Sep Sci 37:912–919

    Article  CAS  PubMed  Google Scholar 

  • Carabias-Martınez R, Rodrıguez-Gonzalo E, Revilla-Ruiz P, Hernandez-Mendez J (2005) Pressurized liquid extraction in the analysis of food and biological samples. J Chromatogr A 1089:1–17

    Article  PubMed  Google Scholar 

  • Commission Regulation (EU) No 519/2014 of 16 May 2014 amending Regulation (EC) No 401/2006 as regards methods of sampling of large lots, spices, and food supplements, performance criteria for T-2 and HT-2 toxin and citrinin and screening methods of analysis. L147/29

    Google Scholar 

  • Cunha SC, Fernandes JO (2010) Development and validation of a method based on a QuEChERS procedure and heart-cutting GC-MS for determination of five mycotoxins in cereal products. J Sep Sci 33:600–609

    Article  CAS  PubMed  Google Scholar 

  • Dietrich R, Maertlbauer E (2015) Development and application of monoclonal antibodies against the mycotoxin mycophenolic acid. Mycotoxin Res 31:185–190

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos SJ, Takabayashi CR, Ono EYS (2011) Immunoassay based on monoclonal antibodies versus LC-MS: deoxynivalenol in wheat and flour in Southern Brazil. Food Addit Contam A 28:1083–1090

    Article  Google Scholar 

  • Dunne L, Daly S, Baxter A, Haughey S, O'Kennedy R (2005) Plasmon resonance‐based immunoassay for the detection of aflatoxin B1 using single‐chain antibody fragments. Spectrosc Lett 38:230–245

    Article  Google Scholar 

  • EPA (2014) Analytical methods approved for drinking water compliance monitoring of organic contaminants. http://water.epa.gov/scitech/drinkingwater/labcert/upload/815b14003.pdf

  • European Commission (2000) Health consumer protection directorate-general. Opinion of the scientific committee on food and Fusarium toxins. Part 2, Zearalenone

    Google Scholar 

  • European Commission (2003) Scientific Committee on Food. Updated opinion of the Scientific Committee, Fumonisin B1, B2 and B3. Off J Eur Union 325:9–30

    Google Scholar 

  • European Commission (2006) Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union 364:5–24

    Google Scholar 

  • Ferreira I, Fernandes JO, Cunha SC (2012) Optimization and validation of a method based in a QuEChERS procedure and gas chromatography–mass spectrometry for the determination of multi-mycotoxins in popcorn. Food Control 27:188–193

    Article  CAS  Google Scholar 

  • Filtenborg O, Frisvad JC, Thrane U (1996) Moulds in food spoilage. Int J Food Microbiol 33:85–102

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Penas E, Leache C, Viscarret M, Perez de Obanos A, Araguas V, Lopez de Cerain A (2004) Determination of ochratoxin A in wine using liquid-phase microextraction combined with liquid chromatography with fluorescence detection. J Chromatogr 1025:163–168

    Article  CAS  Google Scholar 

  • Gulyas H (1985) Determination of aflatoxins b1, b2, g1, g2 and m1 by high pressure thin layer chromatography. J Chromatogr 319:105–111

    Article  CAS  PubMed  Google Scholar 

  • Hickert S, Gerding J, Ncube E, Huebner F, Flett B, Cramer B, Humpf H-U (2015) A new approach using micro HPLC-MS/MS for multi-mycotoxin analysis in maize samples. Mycotoxin Res 31:109–115

    Article  CAS  PubMed  Google Scholar 

  • Holcomb M, Wilson DM, Trucksess MW, Thompson HC (1992) Determination of aflatoxins in food products by chromatography. J Chromatogr 624:341–352

    Article  CAS  PubMed  Google Scholar 

  • Hussein SH, Jeffrey MB (2001) Toxicity, metabolism, and impact of mycotoxins on humans. Toxicology 167:101–134

    Article  CAS  PubMed  Google Scholar 

  • Jo EJ, Mun H, Kim SJ, Shim WB, Kim MG (2015) Detection of ochratoxin A (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor. Food Chem 194:1102–1107

    Article  PubMed  Google Scholar 

  • Kabak B (2009) The fate of mycotoxins during thermal food processing. J Sci Food Agric 89:549–554

    Article  CAS  Google Scholar 

  • Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43(1):1–22

    Article  CAS  PubMed  Google Scholar 

  • Koppen R, Koch M, Siegel D, Merkel S, Maul R, Nehls I (2010) Determination of mycotoxins in foods: current state of analytical methods and limitations. Appl Microbiol Biotechnol 86:1595–1612

    Article  PubMed  Google Scholar 

  • Lattanzio VMT, Ciasca B, Powers S, Von Holst C (2015) Validation of screening methods according to regulation 519/2014/eu. determination of deoxynivalenol in wheat by lateral flow immunoassay: a case study. Trends Anal Chem, http://dx.doi.org/doi: 10.1016/j.trac.2015.10.009

  • Lee HB, Magan N (2000) Impact of environment and interspecific interactions between spoilage fungi and Aspergillus ochraceus on growth and ochratoxin production in maize grain. Int J Food Microbiol 61:11–16

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li P, Zhang Q, Li R, Zhang W, Zhang Z, Ding X, Tang X (2013) Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B1, ochratoxin A and zearalenone in agro-food. Biosens Bioelectron 49:426–432

    Article  CAS  PubMed  Google Scholar 

  • Li C, Mi T, Oliveri Conti G, Yu Q, Wen K, Shen J, Ferrante M, Wang Z (2015) Development of a screening fluorescent polarization immunoassay for simulataneous detection of fumonisins B1 and B2 in maize. J Agric Food Chem 63:4090–4096

    Google Scholar 

  • Malachová A, Sulyok M, Beltrán E, Berthiller F, Krska R (2014) Optimization and validation of a quantitative liquidchromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J Chromatogr 1362:145–156

    Article  Google Scholar 

  • Maragos CM, Busman M (2010) Rapid and advanced tools for mycotoxin analysis: a review. Food Addit Contamin 27:688–700

    Article  CAS  Google Scholar 

  • McCormick SP, Stanley AM, Stover NA, Alexander NJ (2011) Trichothecenes: from simple to complex mycotoxins. Toxins 3:802–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMullin D, Mizaikoff B, Krska R (2015) Advancements in IR spectroscopic approaches for the determination of fungal derived contaminations in food crops. Anal Bioanal Chem 407:653–660

    Article  CAS  PubMed  Google Scholar 

  • Mishra RK, Hayat A, Catanate G, Ocana C, Marty JL (2015) A label free aptasensor for ochratoxin A detection in Cocoa beans: an application to chocolate industry. Anal Chim Acta 889:106–112

    Article  CAS  PubMed  Google Scholar 

  • Molinie A, Faucet V, Castegnaro M, Pfohl-Leszkowicz A (2005) Analysis of some breakfast cereals on the French market for their contents of ochratoxin A, citrinin and fumonisin B1: development of a method for simultaneous extraction of ochratoxin A and citrinin. Food Chem 92:391–400

    Article  CAS  Google Scholar 

  • Myresiotis CK, Testempasis S, Vryzas Z, Karaoglanidis GS, Papadopoulou-Mourkidou E (2015) Determination of mycotoxins in pomegranate fruits and juices using a QuEChERS-based method. Food Chem 182:81–88

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Ohmichi K, Sakamoto S, Sago Y, Kushiro M, Nagashima H, Yoshida M, Nakajima T (2011) Detection of a new Fusarium masked mycotoxin in wheat grain by high-resolution LC–Orbitrap™ MS. Food Addit Contamin 28:1447–1456

    Article  CAS  Google Scholar 

  • Ndube N, van der Westhuizen L, Shephard GS (2009) Determination of fumonisins in maize by HPLC with ultraviolet detection of o-phthaldialdehyde derivatives. Mycotoxin Res 5:225–228

    Article  Google Scholar 

  • Park DL, Trucksess MW, Nesheim S, Stack M, Newell RF (1994) Solvent-efficient thin-layer chromatographic method for the determination of aflatoxins B1, B2, G1, and G2 in corn and peanut products: collaborative study. J AOAC Int 77:637–646

    CAS  PubMed  Google Scholar 

  • Perez-Ortega P, Gilbert-Lopez B, Garcıa-Reyes JF, Molina-Dıaz A (2010) Generic sample treatment method for simultaneous determination of multiclass pesticides and mycotoxins in wines by liquid chromatography-mass spectrometry. J Chromatogr A 1249:32–40

    Article  Google Scholar 

  • Powers TW, Neely BA, Shao Y, Tang H, Troyer DA, Mehta AS, Haab BB, Drake RR (2014) MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays. PLoS One 9:106255

    Article  Google Scholar 

  • Rai M, Jogee PS, Ingle AP (2015) Emerging nanotechnology for detection of mycotoxins in food and feed. Int J Food Sci Nutr 66:363–370

    Article  CAS  PubMed  Google Scholar 

  • Ramesh J, Sarathchandra G, Sureshkumar V (2013) Analysis of feed samples for aflatoxin b1 contamination by hptlc-a validated method. Int J Curr Microbiol Appl Sci 2:373–377

    Google Scholar 

  • Ramos AJ, Labernia N, Marin S, Sanchis V, Magan N (1998) Effect of water activity and temperature on growth and ochratoxin production by three strains of Aspergillus ochraceus on a barley extract medium and on barley grains. Int J Food Microbiol 44:133–140

    Article  CAS  PubMed  Google Scholar 

  • Russell D, Edmondson H, High RD (1997) High resolution mass spectrometry and accurate mass measurements with emphasis on the characterization of peptides and proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 32:263–276

    Article  CAS  Google Scholar 

  • Schenck FJ, Hobbs JE (2004) Evaluation of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) approach to pesticide residue analysis. Bull Environ Contam Toxicol 73:24–30

    Article  CAS  PubMed  Google Scholar 

  • Scudamore KA (2008) Fate of Fusarium mycotoxins in the cereal industry: recent UK studies. World Mycotoxin J 1:315–323

    Article  CAS  Google Scholar 

  • Selvaraj JN, Zhou I, Wang Y, Zhao Y, Xing F, Dai X, Liu Y (2015) Mycotoxin detection- recent trends at global level. J Integr Agric 14:2265–2281

    Article  CAS  Google Scholar 

  • Shephard G (1998) Chromatographic determination of the fumonisin mycotoxins. J Chromatogr A 815:31–39

    Article  CAS  PubMed  Google Scholar 

  • Songa S, Njumbe Ediagea E, Wub A, De Saeger S (2013) Development and application of salting-out assisted liquid/liquid extraction for multi-mycotoxin biomarkers analysis in pig urine with high performance liquid chromatography/tandem mass spectrometry. J Chromatogr A 1292:111–120

    Article  Google Scholar 

  • Squire R (1981) Ranking animal carcinogens: a proposed regulatory approach. Science 214:877–880

    Article  CAS  PubMed  Google Scholar 

  • Stroka J (2014) The approach of the European Union Reference Laboratory to promote reliable measurements. In 36th Mycotoxin Workshop, Göttingen

    Google Scholar 

  • Studer-Rohr I, Dietrich DR, Schlatter J, Schlatter C (1995) The occurrence of ochratoxin A in coffee. Food Chem Toxicol 33:341–355

    Article  CAS  PubMed  Google Scholar 

  • Sulyok M, Krska R, Schuhmacher R (2010) Application of an LC–MS/MS based multi-mycotoxin method. Food Chem 119:408–416

    Article  CAS  Google Scholar 

  • Tang D, Sauceda JC, Lin Z, Ott S, Basova E, Goryacheva I, Biselli S, Lin J, Niessner R, Knopp D (2009) Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food. Biosens Bioelectron 25:514–518

    Article  CAS  PubMed  Google Scholar 

  • Toh SY, Citartan M, Gopinath SCB, Tang TH (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403

    Article  CAS  PubMed  Google Scholar 

  • Trucksess M, Brumley W, Nesheim S (1984) Rapid quantitation and confirmation of aflatoxins in corn and peanut butter, using a disposable silica gel column, thin layer chromatography, and gas chromatography/mass spectrometry. J AOAC Int 67:973–975

    CAS  Google Scholar 

  • Turner NW, Subrahmanyam S, Piletsky SA (2009) Analytical methods for determination of mycotoxins: a review. Anal Chim Acta 632:168–180

    Article  CAS  PubMed  Google Scholar 

  • U.S. Food and Drug Administration (2013) ORA laboratory manual: mycotoxin analysis. FDA Office of Regulatory Affairs. Section 7. Document IV-07, Version 1.6. http://www.fda.gov/ScienceResearch/FieldScience/default.htm

  • Ueno Y (1983) Trichothecenes: chemical, biological and toxicological. Elsevier Press, Amsterdam/New York

    Google Scholar 

  • Urusov AE, Zherdev AV, Petrakova AV, Sadykhov EG, Koroleva OV, Dzantiev BB (2015) Rapid multiple immunoenzyme assay of mycotoxins. Toxins 7:238–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaclavik L, Zachariasova M, Hrbek V, Hajslova J (2010) Analysis of multiple mycotoxins in cereals under ambient conditions using direct analysis in real time (DART) ionization coupled to high resolution mass spectrometry. Talanta 82:1950–1957

    Article  CAS  PubMed  Google Scholar 

  • Vaclavikova M, Vaclavik L, Cajka T (2014) High-throughput analysis of mycotoxins. In: Wang PG, Vitha MF, Kay JF (eds) High-throughput analysis for food safety. Wiley, Hoboken, pp 231–266

    Google Scholar 

  • Varga E, Glauner T, Berthiller F, Krska R, Schuhmacher R, Sulyok M (2013) Development and validation of a (semi-)quantitative UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Anal Bioanal Chem 405:5087–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walorczyk S (2014) Validation and use of a QuEChERS-based gas chromatographic–tandem mass spectrometric method for multiresidue pesticide analysis in blackcurrants including studies of matrix effects and estimation of measurement uncertainty. Talanta 120:106–113

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang X, Zhou Y, Duc L, Wanga Q (2010) Fumonisin detection and analysis of potential fumonisin-producing Fusarium spp. in asparagus (Asparagus officinalis L.) in Zhejiang Province of China. J Sci Food Agric 90:836–842

    CAS  PubMed  Google Scholar 

  • Wen J, Kong W, Hu Y, Wang J, Yang M (2014) Multi-mycotoxins analysis in ginger and related products by UHPLC-FLR detection and LC-MS/MS confirmation. Food Control 43:82–87

    Article  CAS  Google Scholar 

  • Whitaker TB (2003) Standardisation of mycotoxin sampling procedures: an urgen necessity. Food Control 14:233–237

    Article  CAS  Google Scholar 

  • Whitworth J (2013) More than half of apple juice samples above legal patulin limit, says study. Food Quality News, 14 Jun 2013

    Google Scholar 

  • Wild CP, Gong YY (2010) Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 31:71–82

    Article  CAS  PubMed  Google Scholar 

  • Xu YJ, Wang C, Ho WE, Ong CN (2014) Recent developments and applications of metabolomics in microbiological investigations. Trends Anal Chem 56:37–48

    Article  CAS  Google Scholar 

  • Zachariasova M, Lacina O, Malachova A (2010) Novel approaches in analysis of Fusarium mycotoxins in cereals employing ultra performance liquid chromatography coupled with high resolution mass spectrometry. Anal Chim Acta 662:51–61

    Article  CAS  PubMed  Google Scholar 

  • Zöllner P, Mayer-Helm B (2006) Trace mycotoxin analysis in complex biological and food matrices by liquid chromatography–atmospheric pressure ionisation mass spectrometry. J Chromatogr A1136:123–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Gamliel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gamliel, A., Dehne, H.W., Karlovsky, P., Fletcher, J. (2017). Detection of Mycotoxins in Food: Applications of Rapid and Reliable Tools in a Biosecurity Context. In: Gullino, M., Stack, J., Fletcher, J., Mumford, J. (eds) Practical Tools for Plant and Food Biosecurity. Plant Pathology in the 21st Century, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-46897-6_7

Download citation

Publish with us

Policies and ethics