Skip to main content

Evaluating the Efficiency of Robust Team Formation Algorithms

  • Conference paper
  • First Online:
Autonomous Agents and Multiagent Systems (AAMAS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10002))

Included in the following conference series:

Abstract

Selecting a minimal-cost team from a set of agents, with associated costs, to complete a given set of tasks is a common and important multiagent systems problem. Some degree of fault-tolerance in such teams is often required which enables the team to continue to complete all tasks even if a subset of the agents are incapacitated. A \({k}\)-robust team is one that is capable of completing all assigned tasks when any \({k}\) team members are not available. The corresponding decision problem of selecting a \({k}\)-robust team that costs no more than a desired cost threshold has been shown to be NP-Complete. We present and experimentally evaluate, for varying problem sizes and characteristics, heuristic and evolutionary approximation approaches to find optimal-cost \({k}\)-robust teams which can be used for large problems. We present a Linear Programming approximation algorithm that produces optimal results for small problem sizes and prove that it is a \(2\ln (m+k)+O(\ln m)\)-factor approximation of the optimal solution, where m is the number of tasks to be completed. We also present three heuristic algorithms and an evolutionary computation approach which scales up to larger problems. Another advantage of the evolutionary scheme is that it can approximate the Pareto-frontier of teams trading off robustness and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bansal, Nikhil, Pruhs, Kirk: Weighted Geometric Set Multi-cover via Quasi-uniform Sampling. In: Epstein, Leah, Ferragina, Paolo (eds.) ESA 2012. LNCS, vol. 7501, pp. 145–156. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33090-2_14

    Chapter  Google Scholar 

  2. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979). INFORMS

    Article  MathSciNet  MATH  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). IEEE

    Article  Google Scholar 

  4. Johnson, D.S.: Approximation algorithms for combinatorial proble. In: Proceedings of the Fifth Annual ACM Symposium on Theory of computing, pp. 38–49. ACM (1973)

    Google Scholar 

  5. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J., Bohlinger, J. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, US (1972). doi:10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  6. Kitano, H.: RoboCup rescue: a grand challenge for multi-agent systems. In: 2000 Proceedings Fourth International Conference on MultiAgent Systems, pp. 5–12 (2000). doi:10.1109/ICMAS.2000.858425

  7. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 467–476. ACM, New York (2009). doi:10.1145/1557019.1557074

  8. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13(4), 383–390 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bachrach, Y., Kohli, P., Kolmogorov, V., Zadimoghaddam, M.: Optimal coalition structure generation in cooperative graph games. In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2013, pp. 81–87. AAAI Press (2013). http://dl.acm.org/citation.cfm?id=2891460.2891472

  10. Marcolino, L.S., Jiang, A.X., Tambe, M.: Multi-agent team formation: diversity beats strength?. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 279–285. AAAI Press (2013)

    Google Scholar 

  11. Bachrach, Y., Rosenschein, J.S.: Coalitional skill games. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems-Volume 2, pp. 1023–1030. International Foundation for Autonomous Agents and Multiagent Systems (2008)

    Google Scholar 

  12. Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM (JACM) 45(4), 634–652 (1998). ACM

    Article  MathSciNet  MATH  Google Scholar 

  13. Hua, Q.-S., Wang, Y., Yu, D., Lau, F.C.M.: Set multi-covering via inclusion-exclusion. Theoret. Comput. Sci. 410(38), 3882–3892 (2009). Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  14. Hua, Q.-S., Yu, D., Lau, F.C.M., Wang, Y.: Exact algorithms for set multicover and multiset multicover problems. In: Algorithms and Computation, pp. 34–44. Springer (2009)

    Google Scholar 

  15. Hua, Q.-S., Wang, Y., Yu, D., Lau, F.C.M.: Dynamic programming based algorithms for set multicover and multiset multicover problems. Theor. Comput. Sci. 411(26), 2467–2474 (2010). Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  16. Mitchell, S., OSullivan, M., Dunning, I.: PuLP: a linear programming toolkit for python. In: The University of Auckland, Auckland, New Zealand, http://www. optimization-online.org/DB_FILE/2011/09/3178. pdf (2011)

    Google Scholar 

  17. Okimoto, T., Schwind, N., Clement, M., Ribeiro, T., Inoue, K., Marquis, P.: How to form a task-oriented robust team. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 395–403. International Foundation for Autonomous Agents and Multiagent Systems (2015)

    Google Scholar 

  18. Raghavan, P., Tompson, C.D.: Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987). Springer

    Article  MathSciNet  MATH  Google Scholar 

  19. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell. 101(1–2), 165–200 (1998). doi:10.1016/S0004-3702(98)00045-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, S.-J., Lin, L.: Modeling team member characteristics for the formation of a multifunctional team in concurrent engineering. IEEE Trans. Eng. Manage. 51(2), 111–124 (2004). doi:10.1109/TEM.2004.826011

    Article  Google Scholar 

  21. Vazirani, V.V.: Approximation Algorithms. Springer Science & Business Media (2013)

    Google Scholar 

  22. Wi, H., Oh, S., Mun, J., Jung, M.: A team formation model based on knowledge and collaboration. Expert Syst. Appl. 36(5), 9121–9134 (2009). doi:10.1016/j.eswa.2008.12.031

    Article  Google Scholar 

  23. Zzkarian, A., Kusiak, A.: Forming teams: an analytical approach. IIE Trans. 31(1), 85–97 (1999). doi:10.1023/A:1007580823003

    Google Scholar 

  24. Chakrabarty, D.: Approximation via Randomized Rounding. University of Pennsylvania (2010). http://research.microsoft.com/en-us/um/people/dechakr/Courses/CIS800/Notes/lec7.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Crawford, C., Rahaman, Z., Sen, S. (2016). Evaluating the Efficiency of Robust Team Formation Algorithms. In: Osman, N., Sierra, C. (eds) Autonomous Agents and Multiagent Systems. AAMAS 2016. Lecture Notes in Computer Science(), vol 10002. Springer, Cham. https://doi.org/10.1007/978-3-319-46882-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46882-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46881-5

  • Online ISBN: 978-3-319-46882-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics