Skip to main content

Tar Evolution in the Two Stage Fluid Bed-Plasma Gasification Process

  • Chapter
  • First Online:
Clean Energy from Waste

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Waste gasification is considered a valuable solution to the production of clean energy and bio-fuels provided that the syngas produced in the gasifier is free of condensable tars and organic sulphur contaminants that cause equipment fouling and deactivation of catalytic stages downstream.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Álvarez-Rodríguez R, Clemente-Jul C (2008) Hot gas desulphurisation with dolomite sorbent in coal gasification. Fuel 87(17–18):3513–3521

    Article  Google Scholar 

  • Appel J, Bockhorn H, Frenklach M (2000) Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Combust Flame 121(1–2):122–136

    Article  Google Scholar 

  • Arena U (2012) Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 32(4):625–639. doi:10.1016/j.wasman.2011.09.025

  • Basu P, Kaushal P (2009) Modeling of pyrolysis and gasification of biomass in fluidized beds: a review. Chem Prod Process Model 4(1)

    Google Scholar 

  • Bo Z et al (2008) Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion. Int J Hydrogen Energy 33(20):5545–5553

    Article  Google Scholar 

  • Boroson ML et al (1989) Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars. AIChE J 35(1):120–128. doi:10.1002/aic.690350113

  • Cui H et al (2010) Contaminant estimates and removal in product gas from biomass steam gasification. Energy Fuels 24(2):1222–1233

    Article  Google Scholar 

  • Doolan K, Mackie J, Tyler R (1987) Coal flash pyrolysis: secondary cracking of tar vapours in the range 870–2000 K☆. Fuel 66(4):572–578

    Article  Google Scholar 

  • Dufour A et al (2009) Kinetics of thermal conversion of methane in a syngas. Biomass 956–959

    Google Scholar 

  • Futamura S, Annadurai G (2005) Plasma reforming of aliphatic hydrocarbons with CO2. IEEE Trans Ind Appl 41(6):1515–1521

    Google Scholar 

  • Futamura S, Annadurai G (2008) Effects of temperature, voltage properties, and initial gas composition on the plasma reforming of aliphatic hydrocarbons with. IEEE Trans Ind Appl 44(1):53–60

    Google Scholar 

  • Gallagher MJ, Fridman A (2011) Fuel cells: technologies for fuel processing. Elsevier, Amsterdam. Available at: http://www.sciencedirect.com/science/article/pii/B9780444535634100082. Accessed 7 Sept 2015

  • García-Labiano F, Hampartsoumian E, Williams A (1995) Determination of sulfur release and its kinetics in rapid pyrolysis of coal. Fuel 74(7):1072–1079

    Article  Google Scholar 

  • Graber WD, Hüttinger KJ (1982) Chemistry of methane formation in hydrogasification of aromatics. 2. Non-substituted aromatics. Fuel 61(6):499–504

    Google Scholar 

  • Howard IB (1981) Fundamentals of coal pyrolysis and hydropyrolysis. In: Elliott MA (ed) Chemistry of coal utilization, vol 2d Suppl. Wiley, New York

    Google Scholar 

  • Jazbec M, Sendt K, Haynes BS (2004) Kinetic and thermodynamic analysis of the fate of sulphur compounds in gasification products. Fuel 83(16):2133–2138

    Article  Google Scholar 

  • Knudsen JN et al (2004a) Sulfur transformations during thermal conversion of herbaceous biomass. Energy Fuels 18(3):810–819

    Article  MathSciNet  Google Scholar 

  • Knudsen JN, Jensen PA, Dam-Johansen K (2004b) Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass. Energy Fuels 18(5):1385–1399

    Article  Google Scholar 

  • Lee DH et al (2010a) Plasma-controlled chemistry in plasma reforming of methane. Int J Hydrogen Energy 35(20):10967–10976

    Article  Google Scholar 

  • Lee DH et al (2010b) Effect of excess oxygen in plasma reforming of diesel fuel. Int J Hydrogen Energy 35(10):4668–4675

    Article  Google Scholar 

  • Lee DH et al (2013) Mapping plasma chemistry in hydrocarbon fuel processing processes. Plasma Chem Plasma Process 33(1):249–269

    Article  Google Scholar 

  • Marias F et al (2016) Modeling of tar thermal cracking in a plasma reactor. Fuel Process Technol 149:139–152

    Article  Google Scholar 

  • Materazzi M et al (2015a) Performance analysis of RDF gasification in a two stage fluidized bed-plasma process. Waste Manag (New York, NY). Available at: http://www.sciencedirect.com/science/article/pii/S0956053X15004304. Accessed 7 Sept 2015

  • Materazzi M et al (2015b) Reforming of tars and organic sulphur compounds in a plasma-assisted process for waste gasification. Fuel Process Technol 137:259–268. Available at: http://www.sciencedirect.com/science/article/pii/S0378382015001174. Accessed 1 June 2015

  • Meng X (2012) Biomass gasification: the understanding of sulfur, tar, and char reaction in fluidized bed gasifiers

    Google Scholar 

  • Milne TA, Evans RJ (1998) Biomass gasifier “ Tars”: their nature, formation, and conversion. Constraints, p.v. Available at: http://www.osti.gov/energycitations/servlets/purl/3726-YVZLLq/webviewable/

  • Mohammedi MN, Leuenberger JL, Amouroux J (1996) Desulfurization study of hydrocarbon molecules by plasma process for gas/oil applications. In: Preprints of papers—American Chemical Society division fuel chemistry, 211th National meeting, vol 41, no 1. pp 503–509

    Google Scholar 

  • Morf P, Hasler P, Nussbaumer T (2002) Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel 81(7):843–853

    Article  Google Scholar 

  • Murakami T et al (2007) Some process fundamentals of biomass gasification in dual fluidized bed. Fuel 86(1–2):244–255

    Article  Google Scholar 

  • Nelson PF, Hüttinger KJ (1986) The effect of hydrogen pressure and aromatic structure on methane yields from the hydropyrolysis of aromatics. Fuel 65(3):354–361

    Google Scholar 

  • Nelson PF, Tyler RJ (1988) Formation of light gases and aromatic species during the rapid pyrolysis of coal. In: Symposium (international) on combustion, vol 21, no 1, pp 427–435

    Google Scholar 

  • Norinaga K, Hüttinger KJ (2003) Kinetics of surface reactions in carbon deposition from light hydrocarbons. Carbon 41(8):1509–1514

    Article  Google Scholar 

  • Pedersen AJ et al (2010) Release to the gas phase of metals, S and Cl during combustion of dedicated waste fractions. Fuel Process Technol 91(9):1062–1072. doi:10.1016/j.fuproc.2010.03.013

  • Rabou LPLM et al (2009) Tar in biomass producer gas, the Energy Research Centre of the Netherlands (ECN) experience: an enduring challenge. Energy Fuels 23(12):6189–6198

    Article  Google Scholar 

  • Richter H, Howard J (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog Energy Combust. Sci., 26(4–6):565–608

    Google Scholar 

  • Skoulou V et al (2009) Process characteristics and products of olive kernel high temperature steam gasification (HTSG). Bioresour Technol 100(8):2444–2451

    Article  Google Scholar 

  • Snoeckx R et al (2013) Plasma-based dry reforming: a computational study ranging from the nanoseconds to seconds time scale. J Phys Chem C 117(10):4957–4970

    Article  Google Scholar 

  • Tao X et al (2011) CH4-CO2 reforming by plasma—challenges and opportunities. Prog Energy Combust Sci 37(2):113–124

    Article  Google Scholar 

  • Valin S et al (2009) Upgrading biomass pyrolysis gas by conversion of methane at high temperature: experiments and modelling. Fuel 88(5):834–842. doi:10.1016/j.fuel.2008.11.033

  • Vreugdenhil BJ, Zwart RWR (2009) Tar formation in pyrolysis and gasification. ECN-E--08-087 Report. Available at: https://www.ecn.nl/docs/library/report/2008/e08087.pdf

  • Weng CC et al (2004) Modification of aliphatic self-assembled monolayers by free-radical-dominant plasma: the role of the plasma composition. Langmuir 20(23):10093–10099

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Materazzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Materazzi, M. (2017). Tar Evolution in the Two Stage Fluid Bed-Plasma Gasification Process. In: Clean Energy from Waste. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-46870-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46870-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46869-3

  • Online ISBN: 978-3-319-46870-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics